首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明下列命题成立: (1)若A是正交阵,则AT,A-1,A*均是正交阵. (2)矩阵A是正交阵的充要条件是|A|=±1,且|A|=1时,aij=Aij;|A|=一1时,aij=一Aij。
证明下列命题成立: (1)若A是正交阵,则AT,A-1,A*均是正交阵. (2)矩阵A是正交阵的充要条件是|A|=±1,且|A|=1时,aij=Aij;|A|=一1时,aij=一Aij。
admin
2020-09-25
89
问题
证明下列命题成立:
(1)若A是正交阵,则A
T
,A
-1
,A*均是正交阵.
(2)矩阵A是正交阵的充要条件是|A|=±1,且|A|=1时,a
ij
=A
ij
;|A|=一1时,a
ij
=一A
ij
。
选项
答案
(1)因为A正交,所以A
T
=A
-1
,且A
T
(A
T
)
T
=(A
T
A)
T
=E,故A
T
,A
-1
都是正交阵. 因为A正交,所以|A|=±1,A*=|A|.A
-1
,(A*)
T
=|A|.(A
-1
)
T
, 所以A*(A*)
T
=|A|
2
.A
-1
(A
-1
)
T
=E.所以A*是正交矩阵. (2)必要性[*]:A正交,AA
T
=E,因此|A|
2
=1,即|A|=±1. 当|A|=1时,AA*=E即A*=A
-1
=A
T
.所以有A
ij
=a
ij
. 当|A|=一1时,AA*=一E,即A*=一A
-1
=一A
T
,所以有A
ij
=一a
ij
. 充分性[*]:|A|=±1,AA*=|A|E, 当|A|=1时,a
ij
=A
ij
,有A*=A
T
,故AA
T
=AA*=|A|E=E. 当|A|=一1时,a
ij
=-A
ij
,有A*=一A
T
,AA*=一E,即-AA
T
=一E,故AA
T
=E,因 此A是正交阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/mJx4777K
0
考研数学三
相关试题推荐
设某种商品的合格率为90%,某单位要想给100名职工每人一件这种商品.试求:该单位至少购买多少件这种商品才能以97.5%的概率保证每人都可以得到一件合格品?
设f(x)在x=a处存在二阶导数,则
已知实二次型f(x1,x2,x3)=a(x12+x22+x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_________.
设A,B为随机事件,则P(A)=P(B)充分必要条件是()
(14年)设随机变量X,Y的概率分布相同,X的概率分布为P{X=0}=,P{X=1}=,且X与Y的相关系数ρXY=.(Ⅰ)求(X,Y)的概率分布;(Ⅱ)求P{X+Y≤1}.
(98年)设矩阵A=矩阵B=(kE+A)2,其中k为实数,E为单位矩阵.求对角矩阵A,使.B与A相似;并求七为何值时,B为正定矩阵.
(2002年)(I)验证函数y(x)=.(一∞<x<+∞)满足微分方程y"+y’+y=ex:(Ⅱ)利用(I)的结果求幂级数y(x)=的和函数。
计算二重积分其中D是由直线x=-2,y=0,y=2以及曲线所围成的平面区域.
设向量α1,α2,…,αt是齐次线性方程组.AX=0的一个基础解系,向量β不是AX=0的解,即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设某酒厂有一批新酿的好酒,如果现在(假定t=0)就售出,总收入为假定银行的年利润为r,并以连续复利计息.试求窖藏多少年售出可使总收入的现值最大,并求r=0.06时的t值.
随机试题
社会主义道德建设的核心是【】
下列有关成熟红细胞的代谢特点,错误的是
关于双胎妊娠,下列哪项是错误的( )。
患者,女,60岁。无牙颌患者,牙槽嵴欠丰满,上下颌弓后部宽度不协调,下颌弓明显宽于上颌弓。全口义齿人工后牙需要排成反关系的指征是上下颌牙槽嵴顶连线与水平面夹角小于
(2012年)根据某区域的交通噪声测量记录,得到累积百分声级L10=73dB(A)、L5068dB(A)、L90=61dB(A),试计算该区域的噪声污染级LNP为:
下列关于经营杠杆的说法,错误的是()。
下列有关有机化合物的说法正确的是()。
已知向量a和向量b的夹角为30°,|a|=2,|b|=,则向量a和向量b的数量积a·b=____________.
当代经济是以()为核心产业的经济。
Nxeledenouncedsorcery,adultery,______,incest,extortion,andmurder;hewouldnoteatpreparedfood,whichhesaidwasuncl
最新回复
(
0
)