首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明下列命题成立: (1)若A是正交阵,则AT,A-1,A*均是正交阵. (2)矩阵A是正交阵的充要条件是|A|=±1,且|A|=1时,aij=Aij;|A|=一1时,aij=一Aij。
证明下列命题成立: (1)若A是正交阵,则AT,A-1,A*均是正交阵. (2)矩阵A是正交阵的充要条件是|A|=±1,且|A|=1时,aij=Aij;|A|=一1时,aij=一Aij。
admin
2020-09-25
59
问题
证明下列命题成立:
(1)若A是正交阵,则A
T
,A
-1
,A*均是正交阵.
(2)矩阵A是正交阵的充要条件是|A|=±1,且|A|=1时,a
ij
=A
ij
;|A|=一1时,a
ij
=一A
ij
。
选项
答案
(1)因为A正交,所以A
T
=A
-1
,且A
T
(A
T
)
T
=(A
T
A)
T
=E,故A
T
,A
-1
都是正交阵. 因为A正交,所以|A|=±1,A*=|A|.A
-1
,(A*)
T
=|A|.(A
-1
)
T
, 所以A*(A*)
T
=|A|
2
.A
-1
(A
-1
)
T
=E.所以A*是正交矩阵. (2)必要性[*]:A正交,AA
T
=E,因此|A|
2
=1,即|A|=±1. 当|A|=1时,AA*=E即A*=A
-1
=A
T
.所以有A
ij
=a
ij
. 当|A|=一1时,AA*=一E,即A*=一A
-1
=一A
T
,所以有A
ij
=一a
ij
. 充分性[*]:|A|=±1,AA*=|A|E, 当|A|=1时,a
ij
=A
ij
,有A*=A
T
,故AA
T
=AA*=|A|E=E. 当|A|=一1时,a
ij
=-A
ij
,有A*=一A
T
,AA*=一E,即-AA
T
=一E,故AA
T
=E,因 此A是正交阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/mJx4777K
0
考研数学三
相关试题推荐
设4阶矩阵A与B相似,矩阵A的特征值为则行列式|B-1一E|=________。
设A2一BA=E,其中A=,则B=___________.
=_______.
已知α1,α2,α3线性无关,α1+α2,aα2—α3,α1—α2+α3线性相关,则a=___________.
已知方程组无解,则a=_______.
已知矩阵,若线性方程组Ax=b有无穷多解,则a=________.
设随机变量X的概率密度为令Y=X2,F(χ,y)为二维随机变量(X,Y)的分布函数.求(Ⅰ)Y的概率密度FY(y);(Ⅱ)Cov(X,Y);(Ⅲ)F(-,4).
(1991年)求微分方程=x2+y2满足条件y|x=e=2e的特解.
假设某企业在两个相互分割的市场上出售同一种产品,两个市场的需求函数分别是p1=18—2Q1,p2=12一Q2,其中p1和p2分别表示该产品在两个市场的价格(单位:万元/吨),Q1和Q2分别表示该产品在两个市场的销售量(即需求量,单位:吨),并且该企业生产这
设随机变量X1,X2,…,Xn相互独立,Sn=X1+X2+…+Xn则根据列维一林德伯格中心极限定理,当n充分大时,Sn近似服从正态分布,只要X1,X2,…,Xn().
随机试题
根据《女职工劳动保护特别规定》,关于女职工可享受产假天数的说法,正确的是()。
“有些S是P”和“所有S不是P”这两个命题形式()。
男性,63岁。体重92kg,身高171cm,近日出现疲惫,乏力,头晕等症状来院就诊,经检查血压190/112mmHg,尿蛋白(++),有高血压家族史,空腹血糖9.8mmoL/L。与高血压有关的并发症通常不包含
刘某,男,42岁,于12月10日初诊。主诉:腹痛月余,加重3天。腹痛与胃痛的不同之处有
建筑施工企业如果经济状况不好,可以暂停给从事危险作业的职工办理意外伤害险,等经济条件好转后再恢复。
设备更新方案比选的原则之一是不考虑()。
甲公司用800万元购买了一项投资,准备长期持有,其中含有已宣告尚未发放现金股利40万元,另支付交易费用5万元,占被投资单位30%股权,具有重大影响,该投资初始成本为()万元。
“从物到感觉和思想”与“从思想和感觉到物”,这是()
如果用X,Y,分别表示将一枚硬币连掷8次正反面出现的次数,则t的一元二次方程t2+Xt+Y=0有重根的概率是________。
A、Becausethetwowomenwantedtodrinkbeeranddidn’tmove.B、Becauseitwasillegalforthetwowomentoenterthepublicbar
最新回复
(
0
)