首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A与B相似,且A=.求可逆矩阵P,使 P-1AP=B.
设矩阵A与B相似,且A=.求可逆矩阵P,使 P-1AP=B.
admin
2016-10-20
107
问题
设矩阵A与B相似,且A=
.求可逆矩阵P,使
P
-1
AP=B.
选项
答案
由于A~B,据(5.5)及(5.7)有 [*] 由A~B,知A与B有相同的特征值,于是A的特征值是λ
1
=λ
2
=2,λ
3
=6. 当λ=2时,解齐次线性方程组(2E-A)x=0得到基础解系为α
1
=(1,-1,0)
T
,α
2
=(1,0,1)
T
,即λ=2的线性无关的特征向量. 当λ=6时,解齐次线性方程组(6E-A)x=0得到基础解系是(1,-2,3)
T
,即λ=6的特征向量. 那么,令P=(α
1
,α
2
,α
3
)=[*],则有P
-1
AP=B.
解析
A与对角矩阵B相似,为求矩阵P应当用相似的性质先求出a,b,然后再求A的特征值与特征向量.可逆矩阵P即为特征值2和b对应的线性无关特征向量构成的矩阵.
转载请注明原文地址:https://kaotiyun.com/show/mMT4777K
0
考研数学三
相关试题推荐
在电炉上安装了4个温控器,其显示温度的误差是随机的,在使用过程中,只要有2个温控器显示的温度不低于临界温度t0,电炉就断电,以E表示事件“电炉断电”,而T(1)≤T(2)≤T(3)≤(4)为4个温控器显示的按递增顺序排列温度值,则事件E等于().
一批产品共有a十b个,其中a个正品,b个次品.今采用不放回抽样n次,问抽到的n个产品里恰有k个是正品的概率是多少?
一辆飞机场的交通车载有25名乘客,途经9个站,每位乘客都等可能在9个站中任意一站下车,交通车只在有乘客下车时才停车,求下列各事件的概率:(1)交通车在第i站停车;(2)交通车在第i站和第j站至少有一站停车;(3)交通车在第i站
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设β,α1,α2线性相关,β,α2,α3线性无关,则().
一根长为l的棍子在任意两点折断,试计算得到的三段能围成三角形的概率.
如果n个事件A1,A2,…,An相互独立,证明:将其中任何m(1≤m≤n)个事件改为相应的对立事件,形成的新的n个事件仍然相互独立;
设有向量组α1=(1,3,2,0),α2=(7,0,14,3),α3=(2,-1,0,1),α4=(5,1,6,2),α5=(2,-1,4,1),求:(1)向量组的秩;(2)求此向量组的一个极大线性无关组,并把其余的向量分别用该极大无关组线性表示.
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
设矩阵(I)已知A的一个特征值为3,试求y;(Ⅱ)求矩阵P,使(AP)T(AP)为对角矩阵.
随机试题
急性脓胸病人未经胸腔穿刺而在胸部X线见到液气平面,应高度怀疑合并有()
患者男性,74岁,排尿困难2个月,诊为良性前列腺增生症,目前证见小便淋漓不尽,头晕目眩,腰酸膝软,失眠多梦,咽干,舌红苔黄,脉细数,应选何方治疗
杆OA绕固定轴O转动,长为l。某瞬时杆端A点的加速度a如图所示。则该瞬时OA的角速度及角加速度为()。
钢管桩的制造设备较为简单,下沉速度也较同直径的其他管桩快,但()。
下列用地中,应缴纳城镇土地使用税的有()。(2009年)
(2016·山东)问题是个体不能用已有的知识经验直接加以处理并因此而感到疑难的()
“一带一路”高峰论坛峰会结束后,形成了高峰论坛成果清单。该清单主要涵盖了5大类,共76大项、270多项具体成果。下列不属于清单的5大类成果的是()。
“粥”是_____结构。
已知英文字母m的ASCⅡ码值为6DH,那么,码值为4DH的字母是______。
I’mafraidthatyourdaughterhasfailedtogetthroughhermid-termexams.
最新回复
(
0
)