首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2005年] 微分方程xy′+2y=xlnx满足y(1)=一1/9的特解为________.
[2005年] 微分方程xy′+2y=xlnx满足y(1)=一1/9的特解为________.
admin
2019-05-10
40
问题
[2005年] 微分方程xy′+2y=xlnx满足y(1)=一1/9的特解为________.
选项
答案
所给方程可化为一阶线性微分方程,利用公式易求其通解,再由初始条件 即可求得特解,也可用凑导数法求之. 解一 原方程可化为一阶线性微分方程y′+(2/x)y=lnx,其通解为 y=[*]. 将x=1,y=一1/9代入得C=0,则y=(x/3)(lnx一1/3). 解二 用凑导数法求之.为此,在原方程两边乘以x得到 x
2
y′+2xy=x
2
lnx, 即 (x
2
y)′=x
2
lnx. 两边积分得到 x
2
y=∫x
2
lnxdx=[*]x
3
lnx一[*]x
3
+C, 代入初始条件y(1)=一1/9可得C=0,故所求的特解为 y=(xlnx)/3一x/9=(x/3)(lnx一1/3).
解析
转载请注明原文地址:https://kaotiyun.com/show/mNV4777K
0
考研数学二
相关试题推荐
设f(χ)在[a,b]上满足|f〞(χ)|≤2,且f(χ)在(a,b)内取到最小值.证明:|f′(a)|+|f′(b)|≤2(b-a).
设函数f(χ)在[0,2π]上连续可微,f′(χ)≥0,证明:对任意正整数n,有|∫02πf(χ)sinnχdχ|≤[f(2π)-f(0)].
设α1,α2,…,αn为n个线性无关的n维向量,且与向量β正交.证明:向量β为零向量.
设z=z(χ,y)是由f(y-χ,yz)=0确定的,其中f对各个变量有连续的二阶偏导数,求
设函数z=z(χ,y)由方程χ2+y2+z2=χyf(z2)所确定,其中厂是可微函数,计算并化成最简形式.
曲线在t=1处的曲率k=___________.
设α1=,其中c1,c2,c3,c4为任意常数,则下列向量组线性相关的为
设f(x)在x=a处n(n≥2)阶可导,且当x→a时f(x)是x-a的n阶无穷小,求证:f(x)的导函数f’(x)当→a时是x-a的a-1阶无穷小.
设f(x)在x=0的某邻域内连续,且当x→0时,f(x)与xm为同阶无穷小.又设当x→0时,F(x)=∫0xnf(t)dt与xk为同阶无穷小,其中m与n为正整数.则k=()
随机试题
在自然光线下,瞳孔直径约为
未婚女性,20岁。主诉经期腹痛剧烈,于月经来潮时需服镇痛药并卧床休息。平时月经周期规律,基础体温呈双相。肛门检查:子宫前倾前屈、稍小、硬度正常,无压痛,两侧附件(一),分泌物白色透明。本病例最可能的诊断是
以下哪项是藿香具有的药理作用( )。
威灵仙的功效
论述事实认识错误及其对刑事责任的影响。
在环境噪声评价量中“LWECPN”符号表示()。
期货投资者保障基金由中国证监会集中管理,统筹使用。()[2013年3月真题]
三元线性方程组Ax=6的系数矩阵A的秩r(A)=2,且x1=(4,1,-2)T,x2=(2,2,-1)T,x3=(0,3,a)T均为Ax=b的解向量,则A=().
有以下程序#includemain(){intk=5;while(--k)printf("%d",k-=3);printf("\n");}执行后的输出结果是()。
Judyworksinasportsshop.Shelovesallkindsofsports.Shecanswimandskateverywell.Sheoftenplaysbasketballandvol
最新回复
(
0
)