首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件为( ).
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件为( ).
admin
2020-09-25
43
问题
设n维列向量组α
1
,α
2
,…,α
m
(m<n)线性无关,则n维列向量组β
1
,β
2
,…,β
m
线性无关的充分必要条件为( ).
选项
A、向量组α
1
,α
2
,…,α
m
可由向量组β
1
,β
2
,…,β
m
线性表示.
B、向量β
1
,β
2
,…,β
m
可由向量组α
1
,α
2
,…,α
m
线性表示.
C、向量组α
1
,α
2
,…,α
m
与向量组β
1
,β
2
,…,β
m
等价.
D、矩阵A=(α
1
,α
2
,…,α
m
)与矩阵B=(β
1
,β
2
,…,β
m
)等价.
答案
D
解析
A:若向量组α
1
,α
2
,…,α
m
可由向量组β
1
,β
2
,…,β
m
线性表示,则m=R(α
1
,α
2
,…,α
m
)≤R(β
1
,β
2
,…,β
m
)≤m,从而可得R(β
1
,β
2
,…,β
m
)=m,即β
1
,β
2
,…,β
m
线性无关,但反之不一定成立,因为两个向量组秩相等不一定等价.
B:β
1
,β
2
,…,β
m
线性无关并不能推出β
1
,β
2
,…,β
m
可由α
1
,α
2
,…,α
m
线性表示这一结果.
C:两向量组向量个数相同且都线性无关并不能推出两向量组等价.
D:若向量组β
1
,β
2
,…,β
m
线性无关,则R(B)=m,从而可得R(A)=R(B),而A,B为同型矩阵,所以A与B等价.反之,若A与B等价,则R(A)=R(B),又由于α
1
,α
2
,…,α
m
线性无关,从而可得R(A)=m,所以R(B)=m,所以β
1
,β
2
,…,β
m
线性无关.
故选D.
转载请注明原文地址:https://kaotiyun.com/show/mPx4777K
0
考研数学三
相关试题推荐
设3阶矩阵A的特征值为1,2,2,E为3阶单位矩阵,则|4A-1-E|=_____.
已知实二次型f(x1,x2,x3)=a(x12+x22+x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_________.
设u=e—xsin的值为_________.
设α=(1,-1,a)T,β=(1,a,2)T,A=E+αβT,且λ=3是矩阵A的特征值,则矩阵A属于特征值λ=3的特征向量是_________
设A是秩为3的5×4矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,如果α1+α2+2α3=(2,0,0,0)T,3α1+α2=(2,4,6,8)T,则方程组Ax=b的通解是___________。
已知矩阵A=只有一个线性无关的特征向量,那么A的三个特征值是________。
已知α1,α2,α3,β,γ都是4维列向量,且|α1,α2,α3,β|=a,|β+γ,α3,α2,α1|=b,则|2γ,α1,α2,α3|=________.
设A是三阶实对称矩阵,E三阶单位矩阵,若A2+A=2E,且|A|=4,则二次型xTAx的规范形为()
已知X=AX+B,其中求矩阵X.
随机试题
出现黑粪提示上消化道出血量达:()
在家兔动脉血压实验中,夹闭一侧颈总动脉引起全身动脉血压升高,其主要原因是
异常情况前牙排列原则,不正确的是
A.逆转录B.中心法则C.复制D.翻译E.转录RNA指导DNA合成过程叫作
大脑外侧裂池内走行下列哪条动脉
患者,男,66岁。缺失,患者对塑料严重过敏。余牙及缺牙间隙正常若设计成金属支架修复时,采用下述哪种方法复制工作模型最佳
对于手术器械物品,应用最普遍、效果最可靠的灭菌法是()
全国人民代表大会设立民族委员会、外事委员会等专门委员会,下列关于专门委员会的表述正确的是:
以下属于单位工程的有()。
Afterhavingassuredtheirreturnjourney,thewriterandhiscompanioncouldconcentrateoncollectingandfilmanimals.Decidi
最新回复
(
0
)