首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件为( ).
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件为( ).
admin
2020-09-25
89
问题
设n维列向量组α
1
,α
2
,…,α
m
(m<n)线性无关,则n维列向量组β
1
,β
2
,…,β
m
线性无关的充分必要条件为( ).
选项
A、向量组α
1
,α
2
,…,α
m
可由向量组β
1
,β
2
,…,β
m
线性表示.
B、向量β
1
,β
2
,…,β
m
可由向量组α
1
,α
2
,…,α
m
线性表示.
C、向量组α
1
,α
2
,…,α
m
与向量组β
1
,β
2
,…,β
m
等价.
D、矩阵A=(α
1
,α
2
,…,α
m
)与矩阵B=(β
1
,β
2
,…,β
m
)等价.
答案
D
解析
A:若向量组α
1
,α
2
,…,α
m
可由向量组β
1
,β
2
,…,β
m
线性表示,则m=R(α
1
,α
2
,…,α
m
)≤R(β
1
,β
2
,…,β
m
)≤m,从而可得R(β
1
,β
2
,…,β
m
)=m,即β
1
,β
2
,…,β
m
线性无关,但反之不一定成立,因为两个向量组秩相等不一定等价.
B:β
1
,β
2
,…,β
m
线性无关并不能推出β
1
,β
2
,…,β
m
可由α
1
,α
2
,…,α
m
线性表示这一结果.
C:两向量组向量个数相同且都线性无关并不能推出两向量组等价.
D:若向量组β
1
,β
2
,…,β
m
线性无关,则R(B)=m,从而可得R(A)=R(B),而A,B为同型矩阵,所以A与B等价.反之,若A与B等价,则R(A)=R(B),又由于α
1
,α
2
,…,α
m
线性无关,从而可得R(A)=m,所以R(B)=m,所以β
1
,β
2
,…,β
m
线性无关.
故选D.
转载请注明原文地址:https://kaotiyun.com/show/mPx4777K
0
考研数学三
相关试题推荐
方程组x1+x2+x3+x4+x5=0的基础解系是_________.
设A=,B为三阶非零矩阵,且AB=0,则r(A)=__________.
设某种商品的合格率为90%,某单位要想给100名职工每人一件这种商品.试求:该单位至少购买多少件这种商品才能以97.5%的概率保证每人都可以得到一件合格品?
已知,A*是A的伴随矩阵,那么A*的特征值是________。
已知矩阵A=只有一个线性无关的特征向量,那么A的三个特征值是________。
设4维向量组α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。(Ⅰ)计算PTDP,其中P=;(Ⅱ)利用(Ⅰ)的结果判断矩阵B—CTA-1C是否为正定矩阵,并证明你的结论。
(2012年)已知函数f(x)满足方程f’’(x)+f’(x)一2f(x)=0及f’’(x)+f(x)=2ex.(Ⅰ)求f(x)的表达式;(Ⅱ)求曲线y=f(x2)∫0x(一t2)出的拐点.
(97年)设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,I为n阶单位矩阵.(1)计算并化简PQ;(2)证明:矩阵Q可逆的充分必要条件是αTA-1α≠b.
二次型f(x1,x2,x3)=x12+4x22+3x32-4x1x2+2x1x3+8x2x3的秩等于()。
随机试题
只满足医疗、教学和科研需要,其他一律不得使用的药品是
甲以每吨1400元价格从境外进口工业用猪油,冒充食用猪油(其中部分被有机锡污染),以每吨7600元的价格批发给乙。乙明知该批猪油无合法手续又批发给丙丁等人销售,造成大量食用者中毒。甲乙的行为构成:
背景资料:某工程公司承揽了一项市内管道光缆线路工程,由于近期该公司同时有几个项目开展,公司紧急新招了一批工人,并派部分工人参加本项目的施工。项目经理决定亲自负责本项目的安全工作,并不再设置专职安全员,要求技术负责人根据工程特点组织制定了施工安全技
账簿中书写的文字和数字上面要留有适当空格,一般应占格距的1/2。()
美国居民过感恩节时有食用完整火鸡的习惯。为满足这一需要,海尔研发并设计了500多升容积的法式对开门冰箱。而在日本,年轻用户公寓面积比较小,对此,海尔设计出一种体积很小的洗衣机,叫作“个人洗衣间”。由此可见:
【国民经济建设运动】武汉大学2004年中国近现代史真题
豆豆妈妈将豆豆送到幼儿园后极不放心,于是,在幼儿园的监控室观察豆豆的在园表现。豆豆妈妈的观察属于
中国早期接受、宣传马克思主义的主要是
ThemethodsusedinAsynchronousTransferMode(ATM)areswitchtechnologyand(72)isusedtodescribethismode.
Withgreateffortsofthepeace-lovingpeopleallovertheworld,Iraq______thewar.
最新回复
(
0
)