首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(α1,α2,α3,α4)是四阶矩阵,A*为A的伴随矩阵。若(1,0,1,0)T是方程组Ax=0的一个基础解系,则A*x=0的基础解系可以是( )
设A=(α1,α2,α3,α4)是四阶矩阵,A*为A的伴随矩阵。若(1,0,1,0)T是方程组Ax=0的一个基础解系,则A*x=0的基础解系可以是( )
admin
2021-01-19
92
问题
设A=(α
1
,α
2
,α
3
,α
4
)是四阶矩阵,A
*
为A的伴随矩阵。若(1,0,1,0)
T
是方程组Ax=0的一个基础解系,则A
*
x=0的基础解系可以是( )
选项
A、α
1
,α
3
。
B、α
1
,α
2
。
C、α
1
,α
2
,α
3
。
D、α
2
,α
3
,α
4
。
答案
D
解析
因为齐次线性方程组Ax=0的基础解系只包含一个向量(1,0,1,0)
T
,所以矩阵A的秩r(A)=4—1=3,A的伴随矩阵的秩r(A
*
)是由r(A)确定的,即r(A
*
)=1。
r(A
*
)=1
n一r(A
*
)=4—1=3。
从而方程组A
*
x=0的基础解系包含三个线性无关的解向量,因此,选项A,B是错误的。
又因为A
*
A=|A|E和|A|=0,因此矩阵A的列向量α
1
,α
2
,α
3
,α
4
都是方程组A
*
x=0的解,由前面的分析可知r(A)=3,故向量组α
1
,α
2
,α
3
,α
4
的秩也是3,则其中三个线性无关的向量即为A
*
x=0的一个基础解系。
最后,因为(1,0,1,0)
T
是Ax=0的解,因此
=(α
1
,α
2
,α
3
,α
4
)=
=0,
即α
1
+α
3
=0,则α
1
=一α
3
,因此可知α
1
,α
2
,α
4
(或者α
2
,α
3
,α
4
)线性无关,是A
*
x=0的一个基础解析,因此答案D是正确的。
转载请注明原文地址:https://kaotiyun.com/show/mS84777K
0
考研数学二
相关试题推荐
微分方程(6x+y)dx+xdy=0的通解是_________.
设f(χ,y)在区域D:χ2+y2≤t2上连续且f(0,0)=4,则=_______.
已知f’(ex)=xe-x,且f(1)=0,则f(x)=_________。
设f(x1,x2)=,则二次型的对应矩阵是_________。
三阶常系数线性齐次微分方程y’’’一2y’’+y’一2y=0的通解为y=___________.
若向量组α1=(1,一1,2,4)T,α2=(0,3,1,2)T,α4=(3,0,7,a)T,α4=(1,一2,2,0)T线性无关,则未知数a的取值范围是__________.
设曲线y=ax2(a≥0,常数a>0)与曲线y=1一x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形D.求D绕x轴旋转一周所成的旋转体的体积V(a);
设则=______。[img][/img]
设在[0,1]上f’’(x)>0,则f‘(0),f’(1),f(1)一f(0)或f(0)一f(1)的大小顺序是()
设则f{f[f(x)]}等于()
随机试题
根据《水电水利工程施工监理规范》(DL/T5111—2012),监理工程师必须遵守的职业准则包括()。
1998年3月第九届全国人民代表大会第一次会议决定撤销国家教育委员会,恢复_________。
解释下列句中加着重号的词。鵬之背,不知其幾千里也。怒而飛,其翼若垂天之雲。
关于Na+跨细胞膜转运的方式,下列哪项描述正确
尿中含有大量胆红素提示是
确切地说,正确处理医务人员之间关系的意义应除外
监理的服务性指监理人员用自己的知识、技能和经验、信息以及必要的试验、检测手段为建设单位提供( )。
—Iseveryonehere?—Notyet...Look,there______therestofourguests!
许多优秀人才仅因在招聘面试过程中的小小失误就失去了良好的工作机会。尽管面试形式多种多样,主考官的提问五花八门,目前尚无万无一失的应试方法可供应聘者借鉴,但以下要点可以使应聘者提高应试能力,提高成功率。可推知下面的内容是关于()。
在Windows环境下,利用菜单命令删除固定硬盘上的文件与文件夹,实际上是将需要删除的文件与文件夹移动到【 】文件夹中。
最新回复
(
0
)