首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(α1,α2,α3,α4)是四阶矩阵,A*为A的伴随矩阵。若(1,0,1,0)T是方程组Ax=0的一个基础解系,则A*x=0的基础解系可以是( )
设A=(α1,α2,α3,α4)是四阶矩阵,A*为A的伴随矩阵。若(1,0,1,0)T是方程组Ax=0的一个基础解系,则A*x=0的基础解系可以是( )
admin
2021-01-19
82
问题
设A=(α
1
,α
2
,α
3
,α
4
)是四阶矩阵,A
*
为A的伴随矩阵。若(1,0,1,0)
T
是方程组Ax=0的一个基础解系,则A
*
x=0的基础解系可以是( )
选项
A、α
1
,α
3
。
B、α
1
,α
2
。
C、α
1
,α
2
,α
3
。
D、α
2
,α
3
,α
4
。
答案
D
解析
因为齐次线性方程组Ax=0的基础解系只包含一个向量(1,0,1,0)
T
,所以矩阵A的秩r(A)=4—1=3,A的伴随矩阵的秩r(A
*
)是由r(A)确定的,即r(A
*
)=1。
r(A
*
)=1
n一r(A
*
)=4—1=3。
从而方程组A
*
x=0的基础解系包含三个线性无关的解向量,因此,选项A,B是错误的。
又因为A
*
A=|A|E和|A|=0,因此矩阵A的列向量α
1
,α
2
,α
3
,α
4
都是方程组A
*
x=0的解,由前面的分析可知r(A)=3,故向量组α
1
,α
2
,α
3
,α
4
的秩也是3,则其中三个线性无关的向量即为A
*
x=0的一个基础解系。
最后,因为(1,0,1,0)
T
是Ax=0的解,因此
=(α
1
,α
2
,α
3
,α
4
)=
=0,
即α
1
+α
3
=0,则α
1
=一α
3
,因此可知α
1
,α
2
,α
4
(或者α
2
,α
3
,α
4
)线性无关,是A
*
x=0的一个基础解析,因此答案D是正确的。
转载请注明原文地址:https://kaotiyun.com/show/mS84777K
0
考研数学二
相关试题推荐
设三阶矩阵A,B满足关系A-1BA=6A+BA,且A=,则B=_________
设可导函数y=f(x)由方程∫0x+ye-t2dt=∫0xxsin2tdt确定,则=_________。
D是顶点分别为(0,0),(1,0),(1,2)和(0,1)的梯形闭区域,则(1+x)sinydσ=________。
证明极限不存在.
验证函数f(x)=x3+x2在区间[-1,0]上满足罗尔定理.
设函数,数列{xn}满足lnxn+<1。证明xn存在,并求此极限。[img][/img]
若3阶非零方阵B的每一列都是方程组的解,则λ=______,|B|=_______.
若二次型f(x1,x2,x3)=2x12+x32+x22+2x1x2+tx2x3是正定的,则t的取值范围是_______。
设当x→0时,(1一cosx)ln(1+x2)是比xsinxn高阶的无穷小,而xsinxn是比(ex2一1)高阶的无穷小,则正整数n等于()
求数列极限,其中xn=n[e(1+)-n-1].
随机试题
水喷雾系统是通过水雾喷头使水从连续的洒水状态转变成不连续的细小水雾滴而喷射出来,其灭火机理主要是()等作用。
“他在教室看书呢”中“在”是动词。()
背景资料:某机电安装公司通过招标承担了某小区采暖锅炉及辅助设备安装工程,在进行分项工程质量验收时,有下列事件发生:事件一:锅炉本体已安装完毕,但钢骨架因施工过程中保护不够造成局部垂直度超差;事件二:与锅炉本体连接的主干管上,发现有一
自动喷水灭火系统具有()的特点。
国家规定有数量限制的进口货物实行()管理。
假设证券组合P由两个证券组合I和Ⅱ构成,组合Ⅰ的期望收益水平和总风险水平都比Ⅱ的高,并且证券组合Ⅰ和Ⅱ在P中的投资比重分别为0.48和0.52,那么()
下列说法中,()是正确的。
胡克定律
世界经济全球化时期的特点有( )
低冲击力的
最新回复
(
0
)