首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶实矩阵A为反对称矩阵,即AT=-A.证明: (A-E)(A+E)-1是正交矩阵.
设n阶实矩阵A为反对称矩阵,即AT=-A.证明: (A-E)(A+E)-1是正交矩阵.
admin
2021-02-25
22
问题
设n阶实矩阵A为反对称矩阵,即A
T
=-A.证明:
(A-E)(A+E)
-1
是正交矩阵.
选项
答案
由于 [*] 故(A-E)(A+E)
-1
是正交矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/mZ84777K
0
考研数学二
相关试题推荐
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数。求变换后的微分方程满足初始条件y(0)=0,y’(0)=的特解。
已知向量组(Ⅰ)能由向量组(Ⅱ)线性表出,且秩(Ⅰ)=秩(Ⅱ),证明向量组(Ⅰ)与向量组(Ⅱ)等价.
设a1,a2,a3是四元非齐次方程组Ax=b的三个解向量,且秩r(A)=3,a1=(1,2,3,4)T,a2+a3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
设A是3阶矩阵,特征值为1,一1,一2,则下列矩阵中可逆的是
已知A,B为三阶矩阵,且秩(B)=2,秩(AB)=1.试求AX=0的通解.
设3维向量组α1,α2线性无关,β1,β2线性无关.(Ⅰ)证明:存在非零3维向量ξ,ξ既可由α1,α2线性表出,也可由β1,β2线性表出;(Ⅱ)若α1=(1,-2,3)T,α2=(2,1,1)T,β1=(-2,1,4)T,β2=(-5,-3,5)T.求
设三阶方阵A与B相似,且|2E+A|=0。已知λ1=1,λ2=一1是方阵B的两个特征值,则|A+2AB|=________。
随机试题
下列说法正确的是().
MD-4散列算法中输入消息可以任意长度,但要进行分组,其分组的位数是()
教学过程的结构包括_______、感知教材、理解教材、巩固知识、运用知识和检查知识六个阶段。
可复性关节盘前移位时弹响杂音的特点是()
《中华人民共和国物权法》规定,法律规定权利作为物权()的,依照其法律规定。
甲公司2014年年初递延所得税负债的余额为零,递延所得税资产的余额为30万元(系2013年年末应收账款的可抵扣暂时性差异产生)。甲公司2014年度有关交易和事项的会计处理中,与税法规定存在差异的有:资料一:2014年1月1日,购入一项非专利技术并立即用于
美国的一个动物保护组织试图改变蝙蝠在人们心目中一直存在的恐怖形象。这个组织认为,蝙蝠之所以让人觉得可怕并遭到捕杀,仅仅是因为这些羞怯的动物在夜间表现得特别活跃。以下哪项如果为真,将对上述动物保护组织的观点构成最严重的质疑?
马赫主义认为真理是“思想形式”,是“社会组织起来的经验”,凡是多数人承认的就是真理;实用主义认为“有用即真理”这两种观点()
有以下程序:#includemain(){intk,j,s;for(k=2;k
TheCanterburyTaleswaswrittenby______.
最新回复
(
0
)