首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2002年] 设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对于任意常数k,必有( ).
[2002年] 设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对于任意常数k,必有( ).
admin
2021-01-19
104
问题
[2002年] 设向量组α
1
,α
2
,α
3
线性无关,向量β
1
可由α
1
,α
2
,α
3
线性表示,而向量β
2
不能由α
1
,α
2
,α
3
线性表示,则对于任意常数k,必有( ).
选项
A、α
1
,α
2
,α
3
,kβ
1
+β
2
线性无关
B、α
1
,α
2
,α
3
,kβ
1
+β
2
线性相关
C、α
1
,α
2
,α
3
,β
1
+kβ
2
线性无关
D、α
1
,α
2
,α
3
,β
1
+kβ
2
线性相关
答案
A
解析
注意到α
1
,α
2
,α
3
线性无关,β
2
又不能由此向量组线性表示.可利用命题2.3.1.2(1),(3)及命题2.3.2.2等多种方法判别.
解一 因β
1
可由α
1
,α
2
,α
3
线性表示,由命题2.3.1.2(1)知,秩(α
1
,α
2
,α
3
,kβ
1
+β
2
)=秩(α
1
,α
2
,α
3
,β
2
).再由命题2.3.1.2(3)知,秩(α
1
,α
2
,α
3
,β
2
)=4.因而α
1
,α
2
,α
3
,kβ
1
+β
2
线性无关.仅(A)入选.
解二 由题设有β
1
=k
1
α
1
+k
2
α
2
+k
3
α
3
.于是矩阵的初等变换不改变行(列)向量组的秩,从而也不改变其行(列)向量组的线性相关性.通过初等列变换,易得到
[α
1
,α
2
,α
3
,kβ
1
+β
2
]=[α
1
,α
2
,α
3
,kk
1
α
1
+kk
2
α
2
+kk
3
α
3
+β
2
]
[α
1
,α
2
,α
3
3,β
2
],
故秩(α
1
,α
2
,α
3
,kβ
1
+β
3
)=秩(α
1
,α
2
,α
3
,β
2
)=4,所以α
1
,α
2
,α
3
,kβ
1
+β
2
线性无关.
转载请注明原文地址:https://kaotiyun.com/show/ml84777K
0
考研数学二
相关试题推荐
求
设实对称矩阵A满足A2-3A+2E=O,证明:A为正定矩阵.
设y=f(x)为区间[0,1]上的非负连续函数.证明存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;
设函数f(χ)在区间[0,1]上连续,并设,∫01f(χ)dχ=a,求∫01dχ∫χ1f(χ)f(y)dy.
1+x2-当x→0时是x的________阶无穷小(填数字).
若3阶非零方阵B的每一列都是方程组的解,则λ=________,|B|=________.
当△χ→0时α是比△χ较高阶的无穷小量.函数y(χ)在任意点χ处的增量△y=+α且y(0)=π,则y(1)=_______.
设函数f(t)=且f(t)连续,试求f(t).
函数的间断点及类型是()
求函数的间断点,并进行分类.
随机试题
附着于细胞膜表面的C5b~8复合物一般可与多少个C9分子结合形成MAC
如果被害人或证人拒绝人身检查,而侦查人员又认为有必要检查时,可以强制检查。()
随机误差呈现正态分布。()
结论比较可靠,但由于个别事实繁杂,难以一一考察,这是归纳法哪一具体方式的特点?()
低渗性脱水患者的表现,以下不正确的是
参与腭咽闭合的主要肌肉是
关于招标师职业资格考试,下列说法正确的有()。
投资项目资金筹措不正确的做法是()。
多洛雷斯呼声
根据模块的设计原则(40),对于模块的控制范围和模块的作用范围,理想的情况是(41)。
最新回复
(
0
)