首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知微分方程y’+y=f(x),且f(x)是R上的连续函数. (I)当f(x)=x时,求微分方程的通解. (Ⅱ)当f(x)为周期为T的函数,证明:微分方程存在唯一以T为周期的解.
已知微分方程y’+y=f(x),且f(x)是R上的连续函数. (I)当f(x)=x时,求微分方程的通解. (Ⅱ)当f(x)为周期为T的函数,证明:微分方程存在唯一以T为周期的解.
admin
2018-03-26
44
问题
已知微分方程y’+y=f(x),且f(x)是R上的连续函数.
(I)当f(x)=x时,求微分方程的通解.
(Ⅱ)当f(x)为周期为T的函数,证明:微分方程存在唯一以T为周期的解.
选项
答案
(I)通解y(x)=e
-∫1dx
(∫xe
∫1dx
dx+C)=e
-x
(∫xe
x
dx+C) =e
-x
[(x一1)e
x
+C] =(x一1)+Ce
-x
. (Ⅱ)证明:设f(x+T)=f(x),即T是f(x)的周期. 通解y(x)=e
-∫1dx
[∫f(x)e
∫1dx
dx+C]=e
-x
[∫f(x)e
x
dx+C]=e
-x
∫f(x)e
x
dx+Ce
-x
. 设y(x)=e
-x
∫
T
x
f(x)e
x
dx+Ce
-x
,则有 y(x+T)=e
-(x+T)
∫
T
x+T
f(t)e
t
dt+Ce
-(x+T)
[*]e
-(x+T)
∫
0
x
f(u+T)e
u+T
d(u+T)+(Ce
-T
).e
-x
=e
-(x+T)
∫
0
x
f(u)e
u
.e
T
du+(Ce
-T
).e
-x
=e
-x
∫
0
x
f(u)e
u
du+(Ce
-T
).e
-x
, 即y(x+T)依旧是方程的通解,结论得证.
解析
转载请注明原文地址:https://kaotiyun.com/show/mlr4777K
0
考研数学一
相关试题推荐
设A是3×3矩阵,α1,α2,α3是三维列向量,且线性无关,已知Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.证明:Aα1,Aα2,Aα3线性无关;
已知二次型f(x1,x2,x3)=2x12+x22+x32+2tx1x2+tx2x3是正定的,则t的取值范围是____________.
已知ξ1,ξ2是方程(λE-A)X=0的两个不同的解向量,则下列向量中必是A的对应于特征值λ的特征向量的是()
求y’’一y=e|x|的通解.
求微分方程的通解.
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3,如果β=α1+α2+α
设R3中两个基α1=[1,1,0]T,α2=[0,1,1]T,α3=[1,0,1]T;β1=[1,0,0]T,β2=[1,1,0]T,β3=[1,1,1]T.求在上述两个基下有相同坐标的向量.
设R3中两个基α1=[1,1,0]T,α2=[0,1,1]T,α3=[1,0,1]T;β1=[1,0,0]T,β2=[1,1,0]T,β3=[1,1,1]T.求β1,β2,β3到α1,α2,α3的过渡矩阵;
设三阶方阵A、B满足A2B—A—B=E,其中E为三阶单位矩阵,若A=,则行列式|B|=________.
已知3阶矩阵A与3维向量x.使得向量组x,Ax,A2x线性无关,且满足A3x=3Ax一2A2x.(1)记P=(xAxA2x),求3阶矩阵B,使A=PBP—1;(2)计算行列式|A+E|.
随机试题
在《始得西山宴游记》中,作者描写西山之高峻时所运用的表现方法是()
保证具有哪些法律特征。
阅读《断魂枪》中的一段文字,然后回答下列小题:夜静人稀,沙子龙关好了小门,一气把六十四枪刺下来;而后,拄着抢,望着天上的群星,想起当年在野店荒林的威风。叹一口气,用手指慢慢摸着凉滑的枪身,又微微一笑,“不传!不传!”这段文字的描写方法是什么?
CopernicuswasborninTorun,Poland,onFebruary19,1473.Littleisknownabouthisearlylifeexceptthathisfatherdiedwhen
细胞培养中采用薄膜滤器过滤除菌,最常用的滤膜孔径是
A.淀粉酶B.血清转氨酶C.谷氨酰基转肽酶D.血清碱性磷酸酶E.肌酸磷酸激酶对诊断心肌梗死最有意义的是()
无锡市鸿山和梅村乡还保存着泰伯墓和泰伯庙,常熟市虞山尚存仲雍墓。()
近日,“归真堂活熊取胆”成为媒体上最热门的话题之一,保护动物再次成为人们关注的对象。我国对珍贵、濒危的野生动物实行重点保护,那么,国家重点保护的野生动物分为()。
抗战胜利后,学校数量达到最高点的是
求幂级数的和函数f(x)及其极值.
最新回复
(
0
)