首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A,B等价,则下列说法中,不一定成立的是 ( )
设n阶矩阵A,B等价,则下列说法中,不一定成立的是 ( )
admin
2015-08-17
40
问题
设n阶矩阵A,B等价,则下列说法中,不一定成立的是 ( )
选项
A、如果|A|>0,则|B|>0
B、如果A可逆,则存在可逆矩阵P,使得PB=E
C、如果A≌E,则|B|=0
D、存在可逆矩阵P与Q,使得PAQ=B
答案
A
解析
两矩阵等价的充要条件是秩相同.当A可逆时,有r(A)=n,因此有r(B)=n,也即B是可逆的,故B
一1
B=E,可见B中命题成立.A≌E的充要条件也是r(A)=n,此时也有r(B)=n,故|B|≠0,可见C中命题也是成立的.矩阵A,B等价的充要条件是存在可逆矩阵P与Q,使得PAQ=B,可知D中命题也是成立的.故唯一可能不成立的是A中的命题.事实上,当|A|>0时,我们也只能得到r(B)=n,也即|B|≠0,不一定有|B|>0.故选A.
转载请注明原文地址:https://kaotiyun.com/show/bQw4777K
0
考研数学一
相关试题推荐
设y=y(χ),z=z(χ)是由方程z=χf(χ+y)和F(χ,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求.
求∫arcsin2χdχ.
设f(χ)在[0,+∞)可导,且f(0)=0.若f′(χ)>-f(χ),∈(0,+∞),求证:f(χ)>0,χ∈(0,+∞).
利用已知展开式把下列函数展开为x-2的幂级数,并确定收敛域.
若x→0时(1-ax2)1/4-1与xsinx是等价无穷小量,试求常数a.
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵(k为常数),且AB=O,求线性方程组Ax=0的通解。
设其中f具有二阶连续偏导数,g具有二阶连续导数,求.
求一个以y1=tet,y2=sin2t为其两个特解的四阶常系数齐次线性微分方程,并求其通解.
设f(x,y)具有二阶连续偏导数,证明:由方程f(x,y)=0所确定的隐函数y=ψ(x)在x=a处取得极值b=ψ(a)的必要条件是f(a,b)=0,fx’(a,b)=0,fy’(a,b)≠0.且当r(a,b)>0时,b=ψ(a)是极大值
设3阶矩阵A有3个特征向量η1=(1,2,2)T,η2=(2,-2,1)T,η3=(-2,-1,2)T,它们的特征值依次为1,2,3,求A.
随机试题
根据以下情境材料,回答下列问题。大学生小李第一次去某大城市旅游,正值旅游旺季,各酒店客房爆满。小李好不容易订上某酒店的一个标准间。夜晚时分,小李到达酒店,从大楼东侧电梯上18楼,顺楼道径直抵达1810客房入住,楼道两侧客房有14间。夜深时分,楼道间
2008年6月30日,胡锦涛总书记在抗震救灾先进基层党组织和优秀共产党员代表座谈会上概括的伟大抗震救灾精神是
小儿出现高热,面部青紫,尤以鼻柱、两眉间及口唇四周为甚,往往属于
A.CK-MBB.GGTC.LDHD.ALTE.HBDH病毒性肝炎明显升高的酶是
运用各种最新技术实现企业的信息流、物流及资金流的集成和优化运行,使企业赢得竞争的一种生产模式即是()。
下列各项中,违反民法自愿原则的有()。
中国共产党独立领导革命战争和创建人民军队始于()。
东南亚国家和地区高等学校招生主要实行()。
(2016·江西)德育原则是德育工作中必须遵守的基本要求。以下表述能反映因材施教原则的是()
A、Itwillreducegovernmentrevenues.B、Itwillstimulatebusinessactivities.C、Itwillmainlybenefitthewealthy.D、Itwillc
最新回复
(
0
)