首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上二阶可导,且f(a)=f(b)=g(a)=0,证明:∈(a,b),使f"(ξ)g(ξ)+2f’(ξ)g’(ξ)+f(ξ)g"(ξ)=0.
设f(x),g(x)在[a,b]上二阶可导,且f(a)=f(b)=g(a)=0,证明:∈(a,b),使f"(ξ)g(ξ)+2f’(ξ)g’(ξ)+f(ξ)g"(ξ)=0.
admin
2021-11-09
53
问题
设f(x),g(x)在[a,b]上二阶可导,且f(a)=f(b)=g(a)=0,证明:
∈(a,b),使f"(ξ)g(ξ)+2f’(ξ)g’(ξ)+f(ξ)g"(ξ)=0.
选项
答案
令F(x)=f(x)g(x),在x=a点展开泰勒公式. F(x)=F(a)+F’(a)(x—a)+[*]F"(ξ)(x一a)
2
(a<ξ<x). ① 令x=b,代入①式,则 F(b)=F(a)+F’(a)(b一a)+[*]F"(ξ)(b一a)
2
(a<ξ<b). ② 因f(a)=f(b)=g(a)=0,则F(a)=F(b)=0,且F’(a)=0,代入②式,得F"(ξ)=0.即 f"(ξ)g(ξ)+2f’(ξ)g’(ξ)+f(ξ)g"(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/mqy4777K
0
考研数学二
相关试题推荐
设由方程xef(y)=ey确定y为x的函数,其中f(x)二阶可导,且f’≠1,则=________.
设f(x)在[a,b]上二阶可导,且f’(a)=f’(b)=0,证明:存在ε∈(a,b),使得
设f(x)在[0,1]上二阶可导,且|f"(x)|≤1(x∈[0,1]),又f(0)=f(1),证明:|f’(x)|≤.
设f(x)在[a,+∞)上连续,且存在.证明:f(x)在[a,+∞)上有界。
设函数f(x)(x≥0)可微,且f(x)﹥0,将曲线y=f(x),x=1,x=a(a﹥1)及x轴所围成的平面图形绕x轴旋转一周得旋转体体积为.若f(1)=.求f(x).
设η为非零向量,,η为方程组AX=0的解,则a=______,方程组的通解为_______.
设A为m×n矩阵,则方程组AX=b有唯一解的充分必要条件是()。
A、0.B、-∞.C、+∞.D、不存在但也不是∞.D因为et=+∞,et=0,故要分别考察左、右极限.由于因此应选D.
设f(x)在x0处n阶可导,且f(m)(x0)=0(m=1,2,…,n一1),f(n)(x0)≠0(n>2),证明:当n为奇数时,(x,f(x0))为拐点.
设α1=(1,0,2,3)T,α2=(1,1,3,5)T,α3=(1,-1,a+2,1)T,α4=(1,2,4,a+8)T,β=(1,1,b+3,5)T.问:(1)a,b为什么数时,β不能用α1,α2,α3,α4表示?(2)a,b为什么
随机试题
A.分泌性腹泻B.渗出性腹泻C.吸收不良性腹泻D.动力性腹泻E.渗透性腹泻下述疾病分别属于何种腹泻细菌学痢疾()
急性胰腺炎时,关于淀粉酶下列说法正确的是
小建中汤中配伍芍药的意义是()
一英国公民在中国境内居留期间,未持有效旅行证件前往不对外国人开放的地区旅行,被当地县公安机关处以7天的拘留处罚。该英国公民对此不服,前往当地一家律师事务所进行咨询。以下咨询意见正确的是哪些?
按照现行法律法规的有关规定,在以下土地权利中,可以抵押的有()。
债券的发行价格()
英国曾经流传这样一个关于战争的小故事:“少了一颗铁钉,丢了一只马掌;少了一只马掌,摔了一匹战马;摔了一匹战马,死了一位将军;死了一位将军,败了一场战役;败了一场战役,丢了一个国家。所以,少了一颗铁钉导致了一个国家的灭亡。”以下哪项论述与这个故事使用了相同
要了解英国君主立宪制确立之初的情况,下列文献中可供参考的是()。
我们都有过不由自主的时刻,就好像有一种我们所无法控制的力量,违背我们的意志,支配我们做下平时不会做的事,说出平时不会说的话。人越年轻,不由自主的时候就有可能越多,而会使我们陷入不由自主境地的导火索,往往都是由过往事件引发的情绪。它们的逻辑关系是:过往某个重
WaterandCitiesVocabularyandExpressionssanitationmalariajeopardizetenurediarrheacholeraWhatisthe
最新回复
(
0
)