首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4是3维非零向量,则下列说法正确的是
设α1,α2,α3,α4是3维非零向量,则下列说法正确的是
admin
2019-08-12
77
问题
设α
1
,α
2
,α
3
,α
4
是3维非零向量,则下列说法正确的是
选项
A、若α
1
,α
2
线性相关,α
3
,α
4
线性相关,则α
1
+α
3
,α
2
+α
4
也线性相关.
B、若α
1
,α
2
,α
3
线性无关,则α
1
+α
4
,α
2
+α
4
,α
3
+α
4
线性无关.
C、若α
4
不能由α
1
,α
2
,α
3
线性表出,则α
1
,α
2
,α
3
线性相关.
D、若α
1
,α
2
,α
3
,α
4
中任意三个向量均线性无关,则α
1
,α
2
,α
3
,α
4
线性无关.
答案
C
解析
若α
1
=(1,0),α
2
=(2,0),α
3
=(0,2),α
4
=(0,3),则α
1
,α
2
线性相关,α
3
,α
4
线性相关,但α
1
+α
3
=(1,2),α
2
+α
4
=(2,3)线性无关.故(A)不正确.
对于(B),取α
4
=-α
1
,即知(B)不对.
对于(D),可考察向量组(1,0,0),(0,1,0),(0,0,1),(-1,-1,-1),可知(D)不对.
至于(C),因为4个3维向量必线性相关,如若α
1
,α
2
,α
3
线性无关,则α
4
必可由α
1
,α
2
,α
3
线性表出.现在α
4
不能由α
1
,α
2
,α
3
线性表出,故α
1
,α
2
,α
3
必线性相关.故应选(C).
转载请注明原文地址:https://kaotiyun.com/show/mvN4777K
0
考研数学二
相关试题推荐
设λ为可逆方阵A的特征值,且x为对应的特征向量,证明:(1)λ≠0;(2)为A-1的特征值,且x为对应的特征向量;(3)为A*的特征值,且x为对应的特征向量.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.(1)求矩阵A的特征值;(2)判断矩阵A可否对角化.
设A是n阶实反对称矩阵,x,y是实n维列向量,满足Ax=y,证明x与y正交.
在x=0处展开下列函数至括号内的指定阶数:(Ⅰ)f(x)=tanx(x3);(Ⅱ)f(x)=sin(sinx)(x3).
设函数f(x)(x≥0)可微,且f(x)>0.将曲线y=f(x),x=1,x=a(a>1)及x轴所围成平面图形绕x轴旋转一周得旋转体体积为求:f(x);
设f(x)在[a,b]上二阶可导,且f"(x)>0,取xi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明:f(k1x1+k2x2+…+knxn)≤k1f(x1)+k2f(x2)+…+knf(xn).
设z=f(x+y,x一y,xy),其中f具有二阶连续偏导数,求
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:(1)在开区间(a,b)内g(x)≠0;(2)在开区间(a,b)内至少存在一点ξ,使.
已知函数f(x,y)在点(0,0)的某个邻域内连续,且,则
设f(χ)连续可导,g(χ)在χ=0的邻域内连续,且g(0)=1,f′(χ)=-sin2χ+∫0χg(χ+t)dt,则()
随机试题
铣床主轴锥孔轴线的径向圆跳动和轴向窜动的共同原因主要是__________。
可直接导致意识障碍的心律失常是
A.省级药品监督管理局B.市级药品监督管理局C.国家食品药品监督管理局D.药品检验机构E.省级卫生行政部门对批准生产的新药设立监测期的是()
机床的负荷试验主要包括()。
根据增值税的有关规定,增值税一般纳税人支付的下列运输费中,准予凭票抵扣进项税额的有()。
上海市的张某与甲公司(注册地为广州市)于2010年4月1日在北京市签订了1年期的劳动合同。2010年4月10日,张某被甲公司派往深圳市负责销售工作。2011年1月1日,张某发现甲公司未及时足额支付其劳动报酬,张某仍坚持工作,直到2011年4月1日劳动合同终
留置权终止的原因有()。
“铁路联网售票系统”,按计算机应用的分类,它属于()。
Theleadingastronomersofthesixteenthandseventeenthcenturieswerefascinatedbycomets.
A、Red.B、Green.C、Yellow.D、Blue.C看到选项都是颜色,就要格外留神听对话中出现颜色的地方。对话两次提到yellow这个词,且未提及其他颜色,故不难得出答案C。
最新回复
(
0
)