首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
下列命题中 ①如果矩阵AB=E,则A可逆且A一1=B; ②如果n阶矩阵A,B满足(AB)2=E,则(BA)2=E; ③如果矩阵A,B均为n阶不可逆矩阵,则A+B必不可逆; ④如果矩阵A,B均为n阶不可逆矩阵,则AB必不可逆。 正确的是( )
下列命题中 ①如果矩阵AB=E,则A可逆且A一1=B; ②如果n阶矩阵A,B满足(AB)2=E,则(BA)2=E; ③如果矩阵A,B均为n阶不可逆矩阵,则A+B必不可逆; ④如果矩阵A,B均为n阶不可逆矩阵,则AB必不可逆。 正确的是( )
admin
2019-08-12
75
问题
下列命题中
①如果矩阵AB=E,则A可逆且A
一1
=B;
②如果n阶矩阵A,B满足(AB)
2
=E,则(BA)
2
=E;
③如果矩阵A,B均为n阶不可逆矩阵,则A+B必不可逆;
④如果矩阵A,B均为n阶不可逆矩阵,则AB必不可逆。
正确的是( )
选项
A、①②。
B、①④。
C、②③。
D、②④。
答案
D
解析
如果A、B均为n阶矩阵,命题①当然正确,但是题中没有n阶矩阵这一条件,故①不正确。例如
显然A不可逆。若A、B为n阶矩阵,(AB)
2
=E,即(AB)(AB)=E,则可知A、B均可逆,于是ABA=B
一1
,从而BABA=E,即(BA)
2
=E。因此②正确。若设
显然A、B都不可逆,但
可逆,可知③不正确。由于A、B为均n阶不可逆矩阵,知|A|=|B|=0,且结合行列式乘法公式,有|AB|=|A||B|=0,故AB必不可逆。因此④正确。所以应选D。
转载请注明原文地址:https://kaotiyun.com/show/mwN4777K
0
考研数学二
相关试题推荐
(17年)设二阶可导函数f(x)满足f(1)=f(一1)=1,f(0)=一1,且f"(x)>0,则
(12年)设Ik=∫0kπsinxdx(k=1.2,3),则有
(09年)设y=y(x)是由方程xy+ey=x+1确定的隐函数,则
(10年)设函数u=f(x,y)具有二阶连续偏导数,且满足等式确定a,b的值,使等式在变换ξ=x+ay.η=x+by下简化为
(2007年)设矩阵A=,则A3的秩为________.
(2004年)设矩阵A=,矩阵B满足ABA*=2BA*+E,其中A*是A的伴随矩阵,E是单位矩阵,则|B|=_______.
(2017年)设为3阶矩阵.P=(α1,α2,α3)为可逆矩阵,使得P-1AP=,则A(α1+α2+α3)=
(2005年)设A为n(n≥2)阶可逆矩阵,交换A的第1行与第2行得矩阵B,A*,B*分别为A,B的伴随矩阵,则
设f(x,y)=f(x,y)在点(0,0)处是否可微?
随机试题
A.甘氨酸B.色氨酸C.酪氨酸D.谷氨酸去甲肾上腺素合成的原料是
某医院血库的负责人甲和工作人员乙将不符合国家规定标准的血液用于患者,造成患者丙经24小时抢救才脱离危险。此事件有以下法律责任,除了
下列评价指标中属于中期效果评价指标的是()
男孩,4岁。生长落后,活动后气促。查体:胸骨左缘第2~3肋间有3/6级收缩期喷射性杂音,P2亢进。X线片示右心房、右心室扩大。目前最佳的治疗方案是
A.最早的一部中医典籍B.创立药物与针灸并用之法C.开创内伤杂病辨证论治体系D.我国第一部证候学专著E.第一部传染病专著《金匮要略》是
市场监督管理部门不予受理的情形有
如果电用完了,电动自行车就无法继续前行。我的电动自行车不能继续前行,因此,电一定用完了。以下哪项推理与题干的最为类似?()
马克思恩格斯在《共产党宣言》中指出:“资产阶级的灭亡和无产阶级的胜利是同样不可避免的。”这就是我们常说的资本主义必然灭亡和社会主义必然胜利的“两个必然”。马克思在《(政治经济学批判)序言》中又提出了“两个决不会”即:“无论哪一个社会形态,在它所能容纳的全部
证明:方程xa=lnx(a<0)在(0,+∞)上有且仅有一个实根.
Whoisthespeaker?
最新回复
(
0
)