首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
下列命题中 ①如果矩阵AB=E,则A可逆且A一1=B; ②如果n阶矩阵A,B满足(AB)2=E,则(BA)2=E; ③如果矩阵A,B均为n阶不可逆矩阵,则A+B必不可逆; ④如果矩阵A,B均为n阶不可逆矩阵,则AB必不可逆。 正确的是( )
下列命题中 ①如果矩阵AB=E,则A可逆且A一1=B; ②如果n阶矩阵A,B满足(AB)2=E,则(BA)2=E; ③如果矩阵A,B均为n阶不可逆矩阵,则A+B必不可逆; ④如果矩阵A,B均为n阶不可逆矩阵,则AB必不可逆。 正确的是( )
admin
2019-08-12
38
问题
下列命题中
①如果矩阵AB=E,则A可逆且A
一1
=B;
②如果n阶矩阵A,B满足(AB)
2
=E,则(BA)
2
=E;
③如果矩阵A,B均为n阶不可逆矩阵,则A+B必不可逆;
④如果矩阵A,B均为n阶不可逆矩阵,则AB必不可逆。
正确的是( )
选项
A、①②。
B、①④。
C、②③。
D、②④。
答案
D
解析
如果A、B均为n阶矩阵,命题①当然正确,但是题中没有n阶矩阵这一条件,故①不正确。例如
显然A不可逆。若A、B为n阶矩阵,(AB)
2
=E,即(AB)(AB)=E,则可知A、B均可逆,于是ABA=B
一1
,从而BABA=E,即(BA)
2
=E。因此②正确。若设
显然A、B都不可逆,但
可逆,可知③不正确。由于A、B为均n阶不可逆矩阵,知|A|=|B|=0,且结合行列式乘法公式,有|AB|=|A||B|=0,故AB必不可逆。因此④正确。所以应选D。
转载请注明原文地址:https://kaotiyun.com/show/mwN4777K
0
考研数学二
相关试题推荐
(17年)设二阶可导函数f(x)满足f(1)=f(一1)=1,f(0)=一1,且f"(x)>0,则
(14年)设函数f(u)具有2阶连续导数,z=f(excosy)满足若f(0)=0,f’(0)=0,求f(u)的表达式.
(99年)设函数f(x)在闭区间[一1,1]上具有三阶连续导数.且f(一1)=0,f(1)=1,f’(0)=0,证明:在开区间(一1,1)内至少存在一点ξ,使f"(ξ)=3.
(06年)设函数f(u)在(0,+∞)内具有二阶导数.且满足等式(I)验证(Ⅱ)若f(1)=0,f’(1)=1,求函数f(u)的表达式.
(2002年)已知A,B为3阶矩阵,且满足2A-1B=B-4E,其中E是3阶单位矩阵.(1)证明:矩阵A-2E可逆;(2)若B=,求矩阵A.
(1999年)设矩阵矩阵X满足A*X=A-1+2X,其中A*是A的伴随矩阵.求矩阵X.
设f(x,y)=f(x,y)在点(0,0)处是否连续?
设平面曲线L上一点M处的曲率半径为ρ,曲率中心为A,AM为L在点M处的法线,法线上的两点P,Q分别位于L的两侧,其中P在AM上,Q在AM的延长线AN上,若P,Q满足|AP|.|AQ|=ρ2,称P,Q关于L对称.设,P点的坐标为求点P关于L的对称点Q的坐
随机试题
患者,女,35岁。诊断为伤寒,退热1~2周后临床症状再度出现,血培养阳性,应诊断为()
我国历史上第一部商标法规是在________年产生的。()
A、二丑B、鼠粘子C、破故纸D、草河车E、淡大芸牛蒡子的别名是
我国公共应急法制建设过去长期()的原因甚多,但从思想指导上来看,忽视行政应急性原则在行政法制建设中的应有地位和作用,显然是一个不可忽视的制约因素或日理论误区。
砌体结构房屋中,钢筋混凝土梁端下的墙上,有时设置垫块,其目的是()。
负债是指( )义务,履行该义务预期会导致经济利益流出企业。
2017年财务报告于2018年3月31日批准报出,2018年1月销售的商品,2018年2月10日退货,应按调整事项处理。()
甲、乙、丙、丁四家公司与杨某、张某拟共同出资设立一注册资本为400万元的有限责任公司。除杨某与张某拟以120万元货币出资外,四家公司的下列非货币财产出资中,符合公司法律制度规定的是()。
Intheearly1960sWiltChamberlainwasoneofonlythreeplayersintheNationalBasketballAssociation(NBA)listedatoversev
A、Helpful.B、Beneficial.C、Meaningful.D、Pointless.D
最新回复
(
0
)