首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关. (Ⅰ)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示; (Ⅱ)设,求出可由两组向量同时表示的向量.
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关. (Ⅰ)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示; (Ⅱ)设,求出可由两组向量同时表示的向量.
admin
2016-01-22
82
问题
设α
1
,α
2
,β
1
,β
2
为三维列向量组,且α
1
,α
2
与β
1
,β
2
都线性无关.
(Ⅰ)证明:至少存在一个非零向量可同时由α
1
,α
2
和β
1
,β
2
线性表示;
(Ⅱ)设
,求出可由两组向量同时表示的向量.
选项
答案
(Ⅰ)因为α
1
,α
2
,β
1
,β
2
线性相关,故存在不全为零的数k
1
,k
2
,l
1
,l
2
,使k
1
α
1
+ k
2
α
2
+l
1
β
1
+l
2
β
2
=0,即 k
1
解析
转载请注明原文地址:https://kaotiyun.com/show/nDw4777K
0
考研数学一
相关试题推荐
设函数f(x)与g(x)在区间[a,b]上连续,证明:[∫abf(x)g(x)dx]2≤∫abf2(x)dx∫abg2(x)dx.(*)
(1)设A,B为n阶矩阵,|λE-A|=λE-B|且A,B都可相似对角化,证明:A~B.(2)设A=,矩阵A,B是否相似?若A,B相似,求可逆矩阵P,使得P-1AP=B.
设矩阵A=有一个特征值为3.(1)求y;(2)求可逆矩阵P,使得(AP)T(AP)为对角矩阵.
设A为三阶实对称矩阵,α1=(α,-α,1)T是方程组AX=0的解,α2=(α,1,1-α)T是方程组(A+E)X=0的解,则a=________.
设两曲线y=x2+ax+b与-2y=-1+xy3在点(-1,1)处相切,则a=________,b=________.
设A为n阶非奇异矩阵,α是n维列向量,b为常数,.证明PQ可逆的充分必要条件是αTA-1α≠b.
设A为n阶非奇异矩阵,α是n维列向量,b为常数,.计算PQ.
设μ(x,y)在点M0(x0,y0)处取极大值,并且均存在,则()
当x→0时,a(x)=∫0xttandt与β(x)=(n>0)是同阶无穷小,则n=()
设Σ是半球面x2+y2+z2=1(x≥0,y≥0)的外侧,则曲线积分xyzdxdy=().
随机试题
易诱发体液失衡的治疗措施有()
工作人员在接触病人前后均应认真洗手,用清洁剂认真揉搓掌心、指缝、手背、手指关节、指腹、指尖、拇指、腕部等,时间不少于
A.大黄酚B.大黄素C.大黄素甲醚D.芦荟大黄素E.大黄酸
ICSH规定的Ret分型不包括
基础教育课程改革实行整体设置九年一贯的课程门类和课时比例,高中阶段的课程要以()为主。
被誉为“中国幼教之父”的教育家是()。(浙江)
任何情况下,公安机关均不得在夜间或者法定节假日实施行政强制执行。()
下列法律中,主要采用调整国家行政机关与公民法人或者其他组织之间关系的是()。
教育心理学同普通心理学的关系是
由于烧伤致使四个手指黏结在一起时,处置方法是用手术刀将手指黏结部分切开,然后实施皮肤移植,将伤口覆盖住。但是,有一个非常头痛的问题是,手指靠近指根的部分常会随着伤势的愈合又黏结起来,非再一次开刀不可。一位年轻的医生从穿着晚礼服的新娘子手上戴的白手套得到启发
最新回复
(
0
)