首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶方阵,λ1和λ2是A的两个不同的特征值,x1与x2是分别属于λ1和λ2的特征向量,则( ).
设A是n阶方阵,λ1和λ2是A的两个不同的特征值,x1与x2是分别属于λ1和λ2的特征向量,则( ).
admin
2021-07-27
64
问题
设A是n阶方阵,λ
1
和λ
2
是A的两个不同的特征值,x
1
与x
2
是分别属于λ
1
和λ
2
的特征向量,则( ).
选项
A、x
1
+x
2
一定不是A的特征向量
B、x
1
+x
2
一定是A的特征向量
C、不能确定x
1
+x
2
是否为A的特征向量
D、x
1
与x
2
正交
答案
A
解析
在讨论矩阵的特征值与特征向量时,必须要注意特征向量对于特征值的从属关系.这是因为,不同特征值对应的特征向量是线性无关的,尤其是实对称矩阵的不同特征值对应的特征向量是相互正交的.而且,不同特征值对应的特征向量之和一定不是原矩阵的特征向量.因此,可以确定x
1
+x
2
一定不是A的特征向量,故选(A).另外,由于不能确定A为实对称矩阵,所以x
1
与x
2
未必正交.
转载请注明原文地址:https://kaotiyun.com/show/nGy4777K
0
考研数学二
相关试题推荐
设矩阵A=,矩阵B满足(A*)-1BA*=BA*+8A,其中A*为A的伴随矩阵,求矩阵B.
设函数f(x)连续,下列变上限积分函数中,必为偶函数的是().
下列结论正确的是()
设A,B为三阶矩阵,且特征值均为-2,1,1,以下命题:(1)A~B;(2)A,B合同;(3)A,B等价;(4)|A|=|B|中正确的命题个数为().
已知向量组(I)α1,α2,α3,α4线性无关,则与(I)等价的向量组是()
设P=,Q为三阶非零矩阵,且PQ=O,则().
曲线y=(常数a≠0)(-∞<χ<+∞)【】
设二次型f(x1,x2,x3)=XTAX,已知r(A)=2,并且A满足A2-2A=0.则下列各标准二次型(1)2y12+2y22.(2)2y12.(3)2y12+2y32.(4)2y22+2y32.中可用正交变换化为f的是().
设直线y=kχ与曲线y=所围平面图形为D1,它们与直线χ=1围成平面图形为D2.(1)求忌,使得D1与D2分别绕χ轴旋转一周成旋转体体积V1与V2之和最小,并求最小值;(2)求(1)中条件成立时的.
设2n阶行列式D的某一列元素及其余子式都等于a,则D=()
随机试题
人体内嘌呤核苷酸分解代谢的主要终产物是()
内源性感染:
A.股骨颈骨折B.髋关节后脱位C.膝关节脱位D.肘关节脱位E.脊柱骨折肱动脉损伤是由于
下列参与TD—Ag刺激B细胞产生抗体的必需细胞是
下列脏器中,属于上消化道的是()
燃用高硫煤(含硫≥2%)机组或大容量机组(≥200MW)的电厂锅炉建设烟气脱硫设施,投运率保证在电厂正常运行时间()以上。
利率高低决定了人们持币机会成本的大小,利率越高,人们的货币需求越大。()
新中国成立后,经过60年特别是改革开放以来的建设,我国公共卫生体系初步建立,卫生服务能力明显增强。2008年全国共有卫生机构27.8万个,比1949年增加约75倍;卫生技术人员为503万人,比1949年增加9.0倍;医院和卫生院床位数为374.8万张,比1
设f(x)为二阶可导的偶函数,f(0)=l,f”(0)=2且f”(x)在x=0的邻域内连续,则=_____________.
"Brazilhasbecomeoneofthedevelopingworld’sgreatsuccessesatreducingpopulationgrowth—butmorebyaccidentthanbydesi
最新回复
(
0
)