首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(t)在[0,π]上连续,在(0,π)内可导,且∫0πf(x)cosxdx=∫0πf(x)sincxdx=0.证明: 存在ξ∈(0,π),使得f’(ξ)=0.
设f(t)在[0,π]上连续,在(0,π)内可导,且∫0πf(x)cosxdx=∫0πf(x)sincxdx=0.证明: 存在ξ∈(0,π),使得f’(ξ)=0.
admin
2017-12-31
66
问题
设f(t)在[0,π]上连续,在(0,π)内可导,且∫
0
π
f(x)cosxdx=∫
0
π
f(x)sincxdx=0.证明:
存在ξ∈(0,π),使得f’(ξ)=0.
选项
答案
令F(x)=f(t)sintdt,因为F(0)=F(π)=0,所以存在x
1
∈(0,π),使得F’(x
1
)=0,即f(x
1
)sinx
1
=0,又因为sinx
1
≠0,所以f(x
1
)=0. 设x
1
是f(x)在(0,π)内唯一的零点,则当x∈(0,π)且x≠x
1
时,有sin(x-x
1
)f(x)恒正或恒负,于是∫
0
π
sin(x-x
1
)f(x)dx≠0. 而∫
0
π
sin(x-x
1
)f(x)dx=cosx
1
∫
0
π
f(x)sinxdx-sinx
1
∫
0
π
f(x)cosxdx=0,矛盾,所以f(x)在(0,π)内至少有两个零点.不妨设f(x
1
)=f(x
2
)=0,x
1
,x
2
∈(0,π)且x
1
<x
2
,由罗尔中值定理,存在ξ∈(x
1
,x
2
)[*](0,π),使得f’(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/nHX4777K
0
考研数学三
相关试题推荐
设X与Y为具有二阶矩的随机变量,且设Q(a,b)=E[Y一(a+bX)]2,求a,b使Q(a,b)达到最小值Qmin,并证明:Qmin=DY(1一ρXY2).
对三台仪器进行检验,各台仪器产生故障的概率分别为p1,p2,p3,求产生故障仪器的台数X的数学期望和方差.
证明:n>3的非零实方阵A,若它的每个元素等于自己的代数余子式,则A是正交矩阵.
设A是n阶正定阵,E是n阶单位阵,证明:A+E的行列式大于1.
已知,二次型f(x1,x2,x3)=xT(ATA)x的秩为2.求正交变换x=Qy将f化为标准形。
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。(Ⅰ)计算PTDP,其中(Ⅱ)利用(Ⅰ)的结果判断矩阵B—CTA-1C是否为正定矩阵,并证明你的结论。
设f(x)=3x3+x2|x|,则使f(n)(0)存在的最高阶数为()
设y=y(x)在[0,+∞)可导,在x∈(0,+∞)处的增量满足△y(1+△y)=,当△x→0时α是△x的等价无穷小,又y(0)=1,则y(x)=()
曲线y=的渐近线是________.
随机试题
固定资产质量分析时,应当注意以下方面
在人脑中确定对象之间相同点和差异点的思维过程叫作()
腺周口疮的特点是
由于设计任务本身的特点,设计招标通常采用()竞选的方式招标。
对建设工程项目信息进行综合分类,即按多维进行分类时第二维通常指()。
根据判别标准的不同,判别分析包括()。
县级以上人民政府应当根据需要设立流浪乞讨人员救助站,救助站应当根据受助人员的需要提供救助。对照有关法规关于救助站救助内容的规定,下列说法正确的是()。
(2017国考)根据所给材料,回答56~60题。我们的生活被各式各样的信息塞满挤爆,常常来不及消化,就被迫接收下一个信息,这导致信息的传递处于无意识处理的状态,很多问题都来不及深入思考。长期下来,我们的大脑容易被既定的观念限制,看似精明却往往漏
Becauseoftheeconomiccrisis,manygraduatingstudentshavetobe______thepavementsforajobevenbeforegraduation.
Smokingis______inpublicbuildings.
最新回复
(
0
)