首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A、B都是n阶方阵,且A2=E,B2=E,|A|+|B|=0,证明:|A+B|=0.
设A、B都是n阶方阵,且A2=E,B2=E,|A|+|B|=0,证明:|A+B|=0.
admin
2017-06-26
26
问题
设A、B都是n阶方阵,且A
2
=E,B
2
=E,|A|+|B|=0,证明:|A+B|=0.
选项
答案
A
2
=E,[*]|A|=±1,同理有|B|=±1,又|A|=|B|,[*]|A||B|=-1.故|A+B|=|AE+EB|=|AB
2
+A
2
B|=|A(B+A)B|=|A||B+A||B|=-|A+B|[*]|A+B|=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/nNH4777K
0
考研数学三
相关试题推荐
设曲线方程为y=e-x(x≥0).(Ⅰ)把曲线y=e-x(x≥0)、x轴、y轴和直线x=ξ(ξ>0)所围成平面图形绕x轴旋转一周得一旋转体,求此旋转体的体积V(ξ),求满足(Ⅱ)在此曲线上找一点,使过该点的切线与两个坐标轴所夹平面图形的面积最大,并求出
假设随机变量U在区间[-2,2]上服从均匀分布,随机变量试求:(Ⅰ)X和Y的联合概率分布;(Ⅱ)D(X+Y).
设A是3阶矩阵,其特征值为1,一1,一2,则下列矩阵中属于可逆矩阵的是
下列矩阵中不能相似对角化的是
设X1,X2,…,Xn是来自总体X的简单随机样本,X的概率密度为是未知参数.求A的最大似然估计量,并求.
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3一2α1+3α3.求矩阵A的特征向量;
设总体X服从参数λ=2的指数分布,X1,X2,…,Xn是来自总体X的简单随机样本,和S2分别为样本均值和样本方差,已知,则α的值为
设,求f(x)的间断点并分类.
如果数列{xn}收敛,{yn}发散,那么{xnyn}是否一定发散?如果{xn}和{yn}都发散,那么{xnyn}的敛散性又将如何?
求的连续区间、间断点并判别其类型.
随机试题
领导体制的属性包括()
A.两眼鼻侧视野受损B.两眼颞侧视野受损C.同侧眼鼻侧和颞侧视野均受损D.同侧眼鼻侧视野和对侧眼颞侧视野受损E.同侧眼颞侧视野和对侧眼鼻侧视野受损破坏一侧外侧膝状体将出现
幼儿期年龄的划分应是()
A.卡马西平B.丙戊酸钠C.苯妥英钠D.乙琥胺E.安定广谱抗癫痫药是
下面对于点型感烟、感温火灾探测器的安装要求中,正确的是()。
D物业公司在服务住宅区内开设了一家家政服务中心,为住宅区内住户提供钟点家政服务。家政服务中心将物业公司现有办公用房作为办公场所,每月固定分摊物业公司折旧费、水电费、电话费等共计4000元。此外,家政服务中心每月发生其他固定费用900元。家政服务中心现有2
元仁宗于1313年下诏:“第一场明经经疑二问,《大学》《论语》《孟子》《中庸》内出题,并用朱氏章句集注,复以己意结之,限三百字以上。”元仁宗此举意在()。
简述新课程改革促使教师角色发生的四个转变。
圆桌会议是指一种平等、对话的协商会议形式,是在举行国际或国内政治谈判时,为避免席次争执,表示参加各方地位平等起见而采取的一种围圆桌而坐的会议形式。根据上述定义,下列说法不正确的是()。
ThelaunchingofShenzhouVIspacecraftwas______(具有历史意义的事件).
最新回复
(
0
)