首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶非零矩阵,E为n阶单位矩阵,若A3=0,则
设A为n阶非零矩阵,E为n阶单位矩阵,若A3=0,则
admin
2014-01-26
44
问题
设A为n阶非零矩阵,E为n阶单位矩阵,若A
3
=0,则
选项
A、E—A不可逆,E+A不可逆.
B、E—A不可逆,E+A可逆.
C、E—A可逆,E+A可逆.
D、E—A可逆,E+A不可逆.
答案
C
解析
[分析] 利用逆矩阵的定义或特征值进行讨论.
[详解1] 由A
3
=0得 E=E—A
3
=(E—A)(E+A+A
2
),
E=E+A
3
=(E+A)(E—A+A
2
).
所以E—A,E+A均可逆.故选(C).
[详解2] 由A
3
=0知,A的任意特征值λ必满足λ
3
=0,即λ=0为A的n重特征值,于是λ=1为E—A和E+A的n重特征值,即E—A和E+A都没有零特征值.所以E—A,E+A均可逆.故选(C).
转载请注明原文地址:https://kaotiyun.com/show/nQ34777K
0
考研数学二
相关试题推荐
[*]
(2014年)设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1,证明:(Ⅰ)0≤∫axg(t)dt≤x一a,x∈[a,b](Ⅱ)≤∫abf(x)g(x)dx。
(07年)设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,且α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.(Ⅰ)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;(
(02年)设函数u=f(χ,y,z)有连续偏导数,且z=z(χ,y)由方程χeχ-yey=zez所确定,求du.
[2017年]已知方程在区间(0,1)内有实根,求常数k的取值范围.
(95年)已知二次型f(χ1,χ2,χ3)=4χ22-3χ32+4χ1χ2-4χ1χ3+8χ2χ3.(1)写出二次型.厂的矩阵表达式;(2)用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
[2015年]计算二重积分其中D={(x,y)|x2+y2≤2,y≥x2}.
设X,Y为两个随机变量,其中E(X)=2,E(Y)=-1,D(X)=9,D(Y)=16,且X,Y的相关系数为ρ=-1/2,由切比雪夫不等式得P{|X+Y-1|≤10}≥()。
求极限
计算e2x(tanx+1)2dx.
随机试题
偏刀一般是指主偏角()90°的车刀。
运用了“关键的少数和次要的多数”原理的老七种工具是()
免疫系统包括
控制窦性心动过速最有效的药物为对室上性心动过速的疗效较佳的药物
抗组胺H1受体拮抗剂按化学结构类型分类有()。
某化工厂建设项目环评文件已经批准,工厂建设过程中因市场需要,拟采用全新的生产工艺,按照《中华人民共和国环境影响评价法》的规定,()。
设备方案选择包括()。
甲曾任乙装修公司经理,2013年3月辞职,5月8日,为获得更优折扣,甲使用其留有的盖有乙公司公章的空白合同书,以乙公司名义与丙公司订立合同,购买总价15万元的地板,合同约定,6月7日丙公司将地板送至指定地点,乙公司于收到地板后3日内验货,地板经验收合格后,
教育学意义上的教学是()
“七步成诗”的故事是思维过程的()。
最新回复
(
0
)