首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-∞,+∞)内连续且严格单调增加,f(0)=0,常数n为正奇数.并设.则正确的是 ( )
设f(x)在(-∞,+∞)内连续且严格单调增加,f(0)=0,常数n为正奇数.并设.则正确的是 ( )
admin
2019-01-24
38
问题
设f(x)在(-∞,+∞)内连续且严格单调增加,f(0)=0,常数n为正奇数.并设
.则正确的是 ( )
选项
A、F(x)在(-∞,0)内严格单调增加,在(0,+∞)内也严格单调增加.
B、F(x)在(-∞,0)内严格单调增加,在(0,+∞)内严格单调减少.
C、F(x)在(-∞,0)内严格单调减少,在(0,+∞)内严格单调增加.
D、F(x)在(-∞,0)内严格单调减少,在(0,+∞)内也严格单调减少.
答案
C
解析
法一 利用积分中值定理,有
其中,若x>0,则0<ξ<x;若x<0,则x<ξ<0.
当x>0时,则有0<ξ
n
<x
n
,由于f(x)严格单调增加且f(0)=0,从而0<f(ξ)<f(x),即
0<ξ
n
f(ξ)<x
n
f(x).于是F'(x)>0;
当x<0时,则有x
n
<ξ
n
<0,并且f(x)<f(ξ)<0.于是仍有x
n
f(x)>ξ
n
f(ξ)>0.所以
F'(x)<0.选(C).
法二
当x>0时,0<t<x,0<f(t)<f(x),0<t
n
f(t)<x
n
f(x),从而F'(x)>0;
当x<0时,x<t<0,x
n
<t
n
<0,f(x)<f(t)<0,于是t
n
f(t)<x
n
f(x),
,
从而F'(x)<0.故选(C).
转载请注明原文地址:https://kaotiyun.com/show/nSM4777K
0
考研数学一
相关试题推荐
设y=y(x)由方程确定,且y(0)=0,求y=y(x)的最小值.
有一大批产品,其验收方案如下,先做第一次检验,从中任取10件,经检验无次品则接收这批产品,次品数大于2,则拒收;否则做第二次检验.其做法是从中再任取5件,仅当5件无次品时接收这批产品,若产品的次品率为10%,求:这批产品需进行第二次检验且能被接收的概率
12个乒乓球中有9个新球,3个旧球,第一次比赛时,从中任取3个球,用完后放回去,第二次比赛又从中任意取出3个球.(1)求第二次取出的3个球中有2个是新球的概率;(2)若第二次取出的3个球中有2个是新球,求第一次取到的3个球中恰有一个是新球的概率.
设有幂级数2+.求该幂级数的收敛域;
计算I=,其中L是绕原点旋转一周的正向光滑闭曲线.
二次型f(x1,x2,x3)=(x1一2x2)2+4x2x3的矩阵为_______.
判断级数的敛散性.
设直线y=kx与曲线y=所围平面图形为D1,它们与直线x=1围成平面图形为D2。求此时的D1+D2.
设F:x=x(t),y=y(t)(α<t<β是区域D内的光滑曲线,即x(t),y(t)在(α,β)内有连续的导数且x’2(t)+y’2(t)≠0,f(x,y)在D内有连续的偏导数.若P0∈是函数f(x,y)在上的极值点,证明:f(x,y)在点P0沿的切线方
设矩阵A=,行列式|A|=-1,又A*有一个特征值λ0,属于λ0的一个特征向量为α=(-1,-1,1)T,求a,b,c及λ0的值.
随机试题
Globalwarmingiscausingmorethan300,000deathsandabout$125billionineconomiclosseseachyear,accordingtoareportby
在腹前壁上第4腰椎的体表定位点是
乙为水泥厂,甲为水泥销售公司。甲、乙订立一购销合同,约定乙于6月1日前送水泥1000吨给甲;甲支付定金10万元给乙。后乙于6月2日将1000吨水泥运至甲处。甲以乙违约(迟延履行1天)为由,要求乙双倍返还定金20万元。以下说法正确的是:
下列术语中卖方不负责办理出口手续及支付相关费用的是()。
可转换公司债券享受转换特权,在转换前和转换后的形式分别为()。
根据企业所得税相关规定,企业提供劳务完工进度的确定,可以选用的方法有()。
Whodesignedthefirsthelicopter?Who【C1】______themostfamouspicturesintheworld?Whoknewmoreaboutthehumanbodythanm
关于因特网的域名系统,以下哪种说法是错误的?______。
Whichwordcantaketheplaceoftheunderlinedword"fervency"inparagraph1?Theunusuallysurprisingwaythathescoredgoa
A、TomeetCharley.B、Toworkinhisoffice.C、Togotohospital.D、Toattendameeting.DM:ThisisCharleyspeaking.Couldyou
最新回复
(
0
)