首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-∞,+∞)内连续且严格单调增加,f(0)=0,常数n为正奇数.并设.则正确的是 ( )
设f(x)在(-∞,+∞)内连续且严格单调增加,f(0)=0,常数n为正奇数.并设.则正确的是 ( )
admin
2019-01-24
26
问题
设f(x)在(-∞,+∞)内连续且严格单调增加,f(0)=0,常数n为正奇数.并设
.则正确的是 ( )
选项
A、F(x)在(-∞,0)内严格单调增加,在(0,+∞)内也严格单调增加.
B、F(x)在(-∞,0)内严格单调增加,在(0,+∞)内严格单调减少.
C、F(x)在(-∞,0)内严格单调减少,在(0,+∞)内严格单调增加.
D、F(x)在(-∞,0)内严格单调减少,在(0,+∞)内也严格单调减少.
答案
C
解析
法一 利用积分中值定理,有
其中,若x>0,则0<ξ<x;若x<0,则x<ξ<0.
当x>0时,则有0<ξ
n
<x
n
,由于f(x)严格单调增加且f(0)=0,从而0<f(ξ)<f(x),即
0<ξ
n
f(ξ)<x
n
f(x).于是F'(x)>0;
当x<0时,则有x
n
<ξ
n
<0,并且f(x)<f(ξ)<0.于是仍有x
n
f(x)>ξ
n
f(ξ)>0.所以
F'(x)<0.选(C).
法二
当x>0时,0<t<x,0<f(t)<f(x),0<t
n
f(t)<x
n
f(x),从而F'(x)>0;
当x<0时,x<t<0,x
n
<t
n
<0,f(x)<f(t)<0,于是t
n
f(t)<x
n
f(x),
,
从而F'(x)<0.故选(C).
转载请注明原文地址:https://kaotiyun.com/show/nSM4777K
0
考研数学一
相关试题推荐
[*]
作自变量与因变量变换:u=x+y,v=x—y,w=xy—z,变换方程为w关于u,v的偏导数满足的方程,其中z对x,y有连续的二阶偏导数.
有一大批产品,其验收方案如下,先做第一次检验,从中任取10件,经检验无次品则接收这批产品,次品数大于2,则拒收;否则做第二次检验.其做法是从中再任取5件,仅当5件无次品时接收这批产品,若产品的次品率为10%,求:这批产品能够被接收的概率.
设总体X的密度函数为(X1,X2,…,Xn)为来自总体X的简单随机样本.(1)求θ的矩估计量;(2)求.
改变积分次序并计算.
设A为四阶矩阵,|A*|=8,则|(A)-1一3A*|=_______.
计算二重积分I=.
设则有().
设f(x,y)=,讨论函数f(x,y)在点(0,0)处的连续性与可偏导性.
设矩阵A=,行列式|A|=-1,又A*有一个特征值λ0,属于λ0的一个特征向量为α=(-1,-1,1)T,求a,b,c及λ0的值.
随机试题
因不动产提起的行政诉讼,由()人民法院管辖。
对胰腺分泌HCO3-的叙述,错误的是
A.肾结核B.肾盂肾炎C.两者均有D.两者均无肉眼血尿见于
在应激反应中,血浆浓度升高的激素有
降解纤维蛋白产生的片段不包括
A.异丙嗪B.西咪替丁C.前列腺素D.倍他司汀(抗眩啶)E.氯苯那敏(扑尔敏)抑制胃液分泌作用强的药物是
2012年7月15日,某工厂正在生产的梳麻车间、前纺车间和准备车间的联合厂房突然发生亚麻粉尘爆炸起火。一瞬间,停电停水,当班的450名职工大部分被围困在火海之中。经及时抢救,多数职工脱离了危险区。该厂的除尘系统采用布袋除尘,金属管道输送亚麻粉尘。
认知理论中,()是对生活情形中一个重要方面的忽视。
()被认为最符合广西区情、最富有广西特色、最能充分利用广西资源、最能吸引人气财气的产业。
AccordingtoShannon’sequation,whatisthechannelcapacityofananalogvoice-gradephonelinewithabandwidthof3100Hza
最新回复
(
0
)