首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-∞,+∞)内连续且严格单调增加,f(0)=0,常数n为正奇数.并设.则正确的是 ( )
设f(x)在(-∞,+∞)内连续且严格单调增加,f(0)=0,常数n为正奇数.并设.则正确的是 ( )
admin
2019-01-24
46
问题
设f(x)在(-∞,+∞)内连续且严格单调增加,f(0)=0,常数n为正奇数.并设
.则正确的是 ( )
选项
A、F(x)在(-∞,0)内严格单调增加,在(0,+∞)内也严格单调增加.
B、F(x)在(-∞,0)内严格单调增加,在(0,+∞)内严格单调减少.
C、F(x)在(-∞,0)内严格单调减少,在(0,+∞)内严格单调增加.
D、F(x)在(-∞,0)内严格单调减少,在(0,+∞)内也严格单调减少.
答案
C
解析
法一 利用积分中值定理,有
其中,若x>0,则0<ξ<x;若x<0,则x<ξ<0.
当x>0时,则有0<ξ
n
<x
n
,由于f(x)严格单调增加且f(0)=0,从而0<f(ξ)<f(x),即
0<ξ
n
f(ξ)<x
n
f(x).于是F'(x)>0;
当x<0时,则有x
n
<ξ
n
<0,并且f(x)<f(ξ)<0.于是仍有x
n
f(x)>ξ
n
f(ξ)>0.所以
F'(x)<0.选(C).
法二
当x>0时,0<t<x,0<f(t)<f(x),0<t
n
f(t)<x
n
f(x),从而F'(x)>0;
当x<0时,x<t<0,x
n
<t
n
<0,f(x)<f(t)<0,于是t
n
f(t)<x
n
f(x),
,
从而F'(x)<0.故选(C).
转载请注明原文地址:https://kaotiyun.com/show/nSM4777K
0
考研数学一
相关试题推荐
设f(x)在x=x0的邻域内连续,在x=x0的去心邻域内可导,且.证明:f’(x0)=M.
考虑一个试验中,一位机械师从一批零件中逐个拿出零件,直到拿到符合要求的零件为止.拿出零件不符合要求记为F,符合要求记为S.(1)写出这一试验的样本空间;(2)记X=试验终止时取出的零件个数,写出随机变量X作为样本空间上的函数的表达式.
讨论函数f(x)=的连续性.
已知随机变量X和Y独立,X的概率分布和y的概率密度相应为试求随机变量Z=X+Y的概率分布.
设二阶常系数线性微分方程y’’+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
若正项级数都收敛,证明下列级数收敛:
设A(一1,0,4),π:3X一4y+z+10=0,L:1005,求一条过点A与平面π平行,且与直线L相交的直线方程.
直线L:绕x轴旋转一周的旋转曲面方程为_________.
设直线y=kx与曲线y=所围平面图形为D1,它们与直线x=1围成平面图形为D2。求k,使得D1与D2分别绕x轴旋转一周成旋转体体积V1与V2之和最小,并求最小值;
设A是一个n阶方阵,满足A2=A,R(A)=s且A有两个不同的特征值.(Ⅰ)试证A可对角化,并求对角阵A;(Ⅱ)计算行列式|A-2E|.
随机试题
X62W型铣床的()采用了反接制动的停车方法。
________是实行半总统半议会制决策体制的典型国家;________是实行委员会制的典型国家。
某公司原有资本1000万元,其中债务资本400万元(每年负担利息30万元),普通股资本600万元(发行普通股12万股,每股面值50元),企业所得税税率为30%。由于扩大业务,需追加筹资300万元,其筹资方式有三个:一是全部发行普通股,增发6万股,每股面值5
下列哪项不是婴儿急性上呼吸道感染的并发症()
我国扶植中小企业政策规定:凡符合国家产业政策技术改造项目的国有设备投资,按()比例抵免企业所得税。
马克思在研究战争与和平的关系时指出:“战争比和平发达得早;某些经济关系,如雇佣劳动、机器等等,怎样在战争和军队等等中比在资产阶级社会内部发展得早。生产力和交往关系的关系在军队中也特别显著。”这一论述说明了一个重要观点,即()。
《奥格斯堡和约》
基本以下题干,回答问题在某一演出中,全部独唱演员必须演唱7首歌,每首歌只允许唱1次。歌从1到7连续编号。参加该演出的是一演唱组的3个成员张、刘和王,他们必须遵守以下规则:演唱必须从第1首歌开始,按7首歌的编号连续进行,张和王既可以唱奇数号
HowtoSpeakGoodEnglishI.IntroductionA.Manylearnershavingdifficultyincommunicatingduetothelackof【T1】______andr
Wellknownforher________andtough-mindedmoviecriticism,columnistPaulinealsopossessesanextensiveknowledgeofthetec
最新回复
(
0
)