首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,且0≤f(x)≤1,试证在[0,1]内至少存在—个ξ,使f(ξ)=ξ
设f(x)在[0,1]上连续,且0≤f(x)≤1,试证在[0,1]内至少存在—个ξ,使f(ξ)=ξ
admin
2019-07-01
36
问题
设f(x)在[0,1]上连续,且0≤f(x)≤1,试证在[0,1]内至少存在—个ξ,使f(ξ)=ξ
选项
答案
(反证法)设[*]x∈[0,1]有φ(x)=f(x)-x≠0, 所以φ(x)=f(x)-x恒大于0或恒小于0,不妨设[*]x∈[0,1],φ(x)=f(x)-x>0, 于是f(1)≥1+m>1,矛盾,所以在[0,1]内至少存在一个毛,使f(ξ)=ξ少存在一个ξ,使f(ξ)=ξ
解析
转载请注明原文地址:https://kaotiyun.com/show/nUc4777K
0
考研数学一
相关试题推荐
设矩阵A=(aij)n×n的秩为,2,记A的元素aij的代数余子式为Aij,并记A的前r行组成的r×n矩阵为B,证明:向量组α1=(Ar+1,1,…,Ar+1,n)Tα1=(Ar+2,1,…,Ar+2,n)T……αn
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.计算PTDP,其中P=,(B为k阶单位矩阵);
设A为n阶实对称矩阵,秩(A)=n,An是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n).二次型f(x1,x2,…,xn)=xixj.记X=(x1,x2,…,xn)T.把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(X
两家影院竞争1000名观众,每位观众随机地选择影院且互不影响.试用中心极限定理近似计算:每家影院最少应设多少个座位才能保证“因缺少座位而使观众离去”的概率不超过1%?(Ф(2.328)=0.9900)
设随机变量(X,Y)~N(0,1;0,1;ρ),求Emax(X,Y).
证明:(1)若随机变量X只取一个值a,则X与任一随机变量Y独立;(2)符随机变量X与自己独立.则必有常数C,使得P(X=c)=1.
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试证明:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
设A是3阶矩阵,α1,α2,α3是3维列向量,α1≠0,满足Aα1=2α1,Aα2=α1+2α2,Aα3=α2+2α3.证明α1,α2,α3线性无关;
设函数f(x)在[0,+∞)上连续,若对任意的t∈(0,+∞)恒有其中Ω(f)={(x,y,z)|x2+y2+z2≤t2),D(t)是Ω(t)在xOy平面上的投影区域,∑(t)是球域Ω(t)的表面,L(t)是D(t)的边界曲线.证明:f(x)满足∫0t
设A,B,C为常数,B2-AC>0,A≠0.u(x,y)具有二阶连续偏导数.证明:必存在非奇异线性变换ξ=λ1x+y,η=λ2x+y(λ1,λ2为常数),将方程
随机试题
下面谱例为某合唱曲片段,其中不协和音程的数量是()。
天南星的功效是
有关会阴湿热敷溶液的温度及药液浓度,下列正确的是
中国特色社会主义伟大旗帜,具有强大的()
函数y=x3一6x上切线平行于X轴的点是()。
A、B企业签订一份运输合同,运输费用4万元,装卸费用0.5万元,该合同应纳印花税()。
有一个A(2)×B(2)的实验设计结果如下图,对该结果最可能的描述是()。
简单评价多元智力理论及其意义。
PhilanthropyIthasbecomeanAmericantraditionthatthosewhoattaingreatwealthreturnsomeofittothepublicthrough
Thesecretaryworkedlateintothenight,(prepare)______alongspeechforthepresident.
最新回复
(
0
)