首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设区域D为:由以(0,0).(1,1),(0,),(,1)为顶点的四边形与以(,0),(1,0).(1,)为顶点的三角形合成.而(X.Y)在D上服从均匀分布,求关于X和Y的边缘密度fX(χ)和fY(y).
设区域D为:由以(0,0).(1,1),(0,),(,1)为顶点的四边形与以(,0),(1,0).(1,)为顶点的三角形合成.而(X.Y)在D上服从均匀分布,求关于X和Y的边缘密度fX(χ)和fY(y).
admin
2018-08-30
51
问题
设区域D为:由以(0,0).(1,1),(0,
),(
,1)为顶点的四边形与以(
,0),(1,0).(1,
)为顶点的三角形合成.而(X.Y)在D上服从均匀分布,求关于X和Y的边缘密度f
X
(χ)和f
Y
(y).
选项
答案
易算得D
1
的面积为[*],D
2
的面积为[*],故D的面积为[*], ∴(X,Y)的概率密度为 [*] ∴f
X
(χ)=∫
-∞
+∞
f(χ,y)dy 当χ≤0或χ≥1时,f
X
(χ)=0; 当0<χ<[*]时,f
X
(χ)=[*]2dy=1; 当[*]≤χ<1时,f
X
(χ)=[*]2dy+∫
χ
1
2dy=1 而f
Y
(y)=∫
-∞
+∞
f(χ,y)dχ. 当y≤0或y≥1时,f
Y
(y)=0; 当0<y<[*]时,f
Y
(y)=∫
0
χ
2dχ+[*]2dχ=1; 当[*]≤3<1时,f
Y
(y)=[*]2dχ=1.故 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/eMg4777K
0
考研数学一
相关试题推荐
设A为n阶矩阵,若Ak—1α≠0,而Akα=0.证明:向量组α,Aα,…,Ak—1α线性无关.
设a0=1,a1=一2,a2=(n≥2).证明:当|x|<1时,幂级数anxn收敛,并求其和函数S(x).
求幂级数的和函数.
设y=y(x)满足y’=x+y,且满足y(0)=1,讨论级数的敛散性.
微分方程yy"一2(y’)2=0的通解为___________.
同时抛掷三枚匀称的硬币,正面与反面都出现的概率为
设随机变量X~B(1,),Y~E(1),且X与Y相互独立.记Z=(2X一1)Y,(Y,Z)的分布函数为F(y,z).试求:(Ⅰ)Z的概率密度fZ(z);(Ⅱ)F(2,一1)的值.
假设X是只可能取两个值的离散型随机变量,Y是连续型随机变量,且X与Y相互独立,则随机变量X+Y的分布函数
已知(x-1))y″-xy′+y=0的一个解是y1=x,又知=ex-(x2+x+1),y*=-x2-1均是(x-1)y″-xy′+y=(x-1)2的解,则此方程的通解是y=___________.
求下列各微分方程的通解:(Ⅰ)y′=;(Ⅱ)y′=2;(Ⅲ)y′=
随机试题
Hawaii,theyoungeststateoftheUnitedStates,isdifferentinmanywaysfromthemainlandstates.TheHawaiianpeopleaream
简述急性肾功能不全的原因及分类。
烧伤的严重程度取决于
特纳牙是指
为开拓市场需要,个人独资企业主曾水决定在某市设立一个分支机构,委托朋友霍火为分支机构负责人。关于霍火的权利和义务,下列哪一表述是正确的?(2012年卷三第29题)
己公司2月末有关资料如下:“原材料”总账借方余额180000元,其所属明细账的余额如下:A材料:1200千克,每千克60元,计72000元。B材料:800千克,每千克90元,计72000元。C材料:800千克,每千克45元,计36000元。“应付
在“多边形内角和”一课上,某教师设计如下的教学过程:一、学生自主学习,通过阅读课本理解多边形的定义及相关概念1.多边形的定义:在平面内,由若干条不在同一直线上的线段首尾顺次相连组成的封闭图形叫作多边形。在定义中应注意:①若干条;②首尾顺次相连,二者缺一
决定居民消费从低级逐步向较高层次发展的根本因素是()。
以下关于CMM的叙述中,不正确的是_______。
Insomewaystheemploymentinterviewislikeapersuasivespeechbecausetheapplicantseekstopersuadetheemployertoemploy
最新回复
(
0
)