首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αn是n个n维的线性无关向量组,an+1=k1α1+k2α2+…+knαn,其中k1,k2,…,kn全不为零。证明:α1,α2,…,αn,αn+1中任意n个向量线性无关。
设α1,α2,…,αn是n个n维的线性无关向量组,an+1=k1α1+k2α2+…+knαn,其中k1,k2,…,kn全不为零。证明:α1,α2,…,αn,αn+1中任意n个向量线性无关。
admin
2018-01-26
35
问题
设α
1
,α
2
,…,α
n
是n个n维的线性无关向量组,a
n+1
=k
1
α
1
+k
2
α
2
+…+k
n
α
n
,其中k
1
,k
2
,…,k
n
全不为零。证明:α
1
,α
2
,…,α
n
,α
n+1
中任意n个向量线性无关。
选项
答案
选取α
i
之外的n个向量为例。 令λ
1
α
1
+…+λ
i-1
α
i-1
+λ
i+1
α
i+1
+…+λ
n
α
n
+λ
n+1
α
n+1
=0,即(λ
1
+
n+1
λk
1
)α
1
+…+(λ
i-1
+λ
n+1
k
i-1
)α
i-1
+λ
n+1
k
i
α
i
+(λ
i+1
+λ
n+1
k
i+1
)α
i+1
+…+(λ
n
+λ
n+1
k
n
)α
n
=0。 因为α
1
,α
2
,…,α
n
线性无关,所以必有λ
n+1
k
i
=0,而k
i
≠0,则λ
n+1
=0,故由λ
1
+λ
n+1
k
1
=0,…,λ
i-1
+λ
n+1
k
i-1
=0,λ
i+1
+λ
n+1
k
i+1
=0,…,λ
n
+λ
n+1
k
n
=0,立即得λ
1
=λ
2
=…=λ
i-1
=λ
i+1
=…=λ
n+1
=0,所以α
1
,α
2
,…,α
i-1
,α
i+1
,…,α
n
,α
n+1
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/ncr4777K
0
考研数学一
相关试题推荐
设f(x,y)可微,f(1,2)=2,fx’(1,2)=3,fy’(1,2)=4,φ(x)=f[x,f(x,2x)],则φ’(1)=__________.
设f(x)连续可导,g(x)连续,且,又f’(x)=一2x2+,则().
设f(x)在[一a,a](a>0)上有四阶连续的导数,存在.证明:存在ξ1,ξ2∈[一a,a],使得
求二阶常系数线性微分方程y’’+λy’=2x+1的通解,其中λ为常数.
设有方程y’+P(x)y=x2,其中试求在(一∞,+∞)内的连续函数y=y(x),使之在(一∞,1)和(1,+∞)内都满足方程,且满足初值条件y(0)=2.
微分方程y’’+2y’+2y=e-xsinx的特解形式为()
设向量组(I)α1,α2,…,αs线性无关,(Ⅱ)β1,β2,…,βt线性无关,且αi(i=1,2,…,s)不能由(Ⅱ)β1,β2,…,βt线性表出,βi(i=1,2,…,t)不能由(I)α1,α2,…,αs线性表出,则向量组α1,α2,…,αs,β1,β
设向量α=[a1,a2……an]T,β=[b1,b2……bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:A能否相似于对角阵,说明理由.
设A是3×3矩阵,α1,α2,α3是三维列向量,且线性无关,已知Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.证明:Aα1,Aα2,Aα3线性无关;
求下列行列式的值:
随机试题
论述道德的历史演变及其发展规律。
Scheie房角色素分级法的Ⅱ级是指
A.嵌体B.铸造金属全冠C.桩冠D.树脂全冠E.3/4冠必须使用沟固位形的是哪一种修复体
对某地25~55岁妇女进行的一项调查发现:服用口服避孕药者心肌梗死的年发病率为10/10万,而不服用者为2/10万。据此,研究者认为:服用口服避孕药是引起心肌梗死的危险因子。这个结论是
粉尘通过滤介质受阻,而将固体颗粒物分离出来的方法是()。
为使填料塔发挥良好的效能,填料应满足的要求为()。
集体舆论
1877年,第一部正式以教育心理学来命名的教育心理学著作一《教育心理学》的作者是()
关于矢量图形和位图图像,下面说法正确的是()。
我国封建社会后期教育的主要内容是什么?()
最新回复
(
0
)