首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αn是n个n维的线性无关向量组,an+1=k1α1+k2α2+…+knαn,其中k1,k2,…,kn全不为零。证明:α1,α2,…,αn,αn+1中任意n个向量线性无关。
设α1,α2,…,αn是n个n维的线性无关向量组,an+1=k1α1+k2α2+…+knαn,其中k1,k2,…,kn全不为零。证明:α1,α2,…,αn,αn+1中任意n个向量线性无关。
admin
2018-01-26
49
问题
设α
1
,α
2
,…,α
n
是n个n维的线性无关向量组,a
n+1
=k
1
α
1
+k
2
α
2
+…+k
n
α
n
,其中k
1
,k
2
,…,k
n
全不为零。证明:α
1
,α
2
,…,α
n
,α
n+1
中任意n个向量线性无关。
选项
答案
选取α
i
之外的n个向量为例。 令λ
1
α
1
+…+λ
i-1
α
i-1
+λ
i+1
α
i+1
+…+λ
n
α
n
+λ
n+1
α
n+1
=0,即(λ
1
+
n+1
λk
1
)α
1
+…+(λ
i-1
+λ
n+1
k
i-1
)α
i-1
+λ
n+1
k
i
α
i
+(λ
i+1
+λ
n+1
k
i+1
)α
i+1
+…+(λ
n
+λ
n+1
k
n
)α
n
=0。 因为α
1
,α
2
,…,α
n
线性无关,所以必有λ
n+1
k
i
=0,而k
i
≠0,则λ
n+1
=0,故由λ
1
+λ
n+1
k
1
=0,…,λ
i-1
+λ
n+1
k
i-1
=0,λ
i+1
+λ
n+1
k
i+1
=0,…,λ
n
+λ
n+1
k
n
=0,立即得λ
1
=λ
2
=…=λ
i-1
=λ
i+1
=…=λ
n+1
=0,所以α
1
,α
2
,…,α
i-1
,α
i+1
,…,α
n
,α
n+1
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/ncr4777K
0
考研数学一
相关试题推荐
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,.证明:存在ξ∈(a,b),使得f"(ξ)=f(ξ);
设f(x)在[a,b]上二阶可导,且f"(x)>0,取xi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明:f(k1x1+k2x2+…+knxn)≤k1f(x1)+k2f(x2)+…+knf(
对于任意二事件A1,A2,考虑二随机变量试证明:随机变量X1和X2独立的充分必要条件是事件A1和A2相互独立.
假设你是参加某卫视“相亲节目”的男嘉宾,现有n位女嘉宾在你面前自左到右排在一条直线上,每两位相邻的女嘉宾的距离为a(米).假设每位女嘉宾举手时你必须和她去握手,每位女嘉宾举手的概率均为且相互独立,若Z表示你和一位女嘉宾握手后到另一位举手的女嘉宾处所走的路程
微分方程(6x+y)dx+xdy=0的通解是_______.
微分方程y’+ytanx=cox的通解为y=_________.
(1)证明:(2)求
设向量α=[a1,a2……an]T,β=[b1,b2……bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:A的特征值和特征向量;
设A是4×5矩阵,且A的行向量组线性无关,则下列说法错误的是()
设在全平面上有,则下列条件中能保证f(x1,y1)<f(x2,y2)的是()。
随机试题
当压送的流体在管道内流动时,任一截面处的流速与()成反比。
企业在建立工资分配制度时应注意以下几点要求:
对鉴别太阳蓄水证与太阳蓄血证最有意义的是
复钙时间延长,正常新鲜血浆和正常人血清能纠正,正常硫酸钡吸附血浆不能纠正,提示__________因子缺乏。
下述哪项能使抗利尿激素分泌增多
A.张口过度B.脑脊液漏C.舌后坠D.后牙早接触,前牙开颌E.复视双侧颏孔区骨折可出现
根据下图,回答111-115题。根据上图,下列说法正确的是()。
操作系统中的下列功能,与硬盘没有直接关系的是哪一种()。
在考生文件夹下完成如下简单应用:(1)将客户1表中的全部记录追加到客户表中,然后用SQLSELECT语句完成查询:列出目前有订购单的客户信息(即有对应的订货记录的客户表中的记录),同时要求按客户编号升序排序,并将结果存储到“result”表中(表结
Filmhaspropertiesthatsetitapartfrompainting,sculpture,novels,andplays.Itisalso,initsmostpopularandpowerful
最新回复
(
0
)