首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X的方差存在,并且满足不等式P{|X—E(X)|≥3}≤,则一定有( )
设随机变量X的方差存在,并且满足不等式P{|X—E(X)|≥3}≤,则一定有( )
admin
2016-03-21
78
问题
设随机变量X的方差存在,并且满足不等式P{|X—E(X)|≥3}≤
,则一定有( )
选项
A、D(X)=2.
B、P{|X—E(x)|<3}<
.
C、D(X)≠2.
D、P{|X—E(X)|<3}≥
.
答案
D
解析
因为事件{|X—E(X)|<3}是事件{|X—E(x)|≥3}的对立事件,且题设P{|X—E(X)|≥3}≤
,因此一定有P{|X—E(X)|<3}≥
,选项D正确.进一步分析,满足不等式P{|X—E(X)|≥3}≤
的随机变量,其方差既可能不等于2,亦可以等于2,因此选项A与C都不能选.若X服从参数n=8,p=0.5的二项分布,则有E(X)=4,D(X)=2.但是P{|X—E(X)|≥3}=P{|X一4|≥3}=P{X=0}+P{X=1}+P{X=7}+P{X=8}=
因此选项B也不成立.
转载请注明原文地址:https://kaotiyun.com/show/njw4777K
0
考研数学一
相关试题推荐
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数。求变换后的微分方程满足初始条件y(0)=0,的解。
设二阶常系数线性微分方程y"+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解。
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.设ξ1,ξ2,ξ3,…,ξr与η1,η2,η3,…,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,ξ3,…,ξr与η1,η2,η3,…,ηs线性无关。
飞机以匀速v沿y轴正向飞行,当飞机行至O时被发现,随即从x轴上点(x0,0)处发射一枚导弹向飞机飞去(x0>0),若导弹方向始终飞向飞机,且速度大小为2v.求导弹运行的轨迹满足的微分方程及初始条件。
设F(x)为f(x)的原函数,且当x≥0时,f(x)F(x)=,又F(0)=1,F(x)>0,求f(x).
设f(x)有连续导数,f(x)>0,且对任意x,h,满足f(x+h)=∫xx+hdt+f(x),f(1)=求y=f(x)与两个坐标轴及x=1所围图形绕y轴旋转一周所得旋转体的体积
某企业做销售某种商品的广告可通过电台及报纸两种方式,根据统计资料,销售收入R(万元)与电台广告费用x1(万元)和报纸广告费用x2(万元)之间的关系如下:R=15+14x1+32x2-8x1x2-2x12-10x22若提供的广告费用为1.5万元
连续进行n次独立重复试验,设每次试验中成功的概率为p,0≤p≤1.问p为何值时,成功次数的方差为0?p为何值时,成功次数的方差达到最大?
设y=ex,求dy和d2y:(1)x为自变量;(2)x=x(t),t为自变量,x(t)二阶可导.
一串钥匙,共有10把,其中有4把能打开门,因开门者忘记哪些能打开门,便逐把试开,求下列事件的概率:最多试3把钥匙就能打开门
随机试题
胃液分析结果为胃酸缺乏可见于
中药最本质的特点是
下列律师的哪些行为,应吊销律师执业证书?
关于三相四孔插座接线的说法,正确的是()。
【背景资料】某城市高架桥上部结构为钢筋混凝土预应力简支梁,下部结构采用独柱式T形桥墩,钻孔灌注桩基础。项目部编制了桥墩专项施工方案,方案中采用扣件式钢管支架及定型钢模板。为了加强整体性,项目部将支架与脚手架一体化搭设,现场采用的支架模板
对于固定资产重置引起的融资需求,银行可以通过评估()来预测,
下列各句中,没有语病的一句是()。
下列以平衡国际收支的暂时不平衡为主要功能的组织是()。
当看到雄伟壮观的国家体育场“鸟巢”时,你的大脑皮层接收的是()。(2010年)
以下对“深环境论”的解说,正确的一项是()。根据全文信息,以下分析正确的一项()。
最新回复
(
0
)