首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)是连续函数。 若|f(x)|≤k,证明:当x≥0时,有(eax-1).
设f(x)是连续函数。 若|f(x)|≤k,证明:当x≥0时,有(eax-1).
admin
2021-11-25
72
问题
设f(x)是连续函数。
若|f(x)|≤k,证明:当x≥0时,有
(e
ax
-1).
选项
答案
当x≥0时, |y|=e
-ax
|∫
0
x
f(t)e
at
dt|≤e
-ax
∫
0
x
|f(t)|e
at
dt≤ke
-ax
∫
0
x
e
at
dt=[*]e
-ax
(e
ax
-1), 因为e
-ax
≤1,所以|y|≤[*](e
ax
-1).
解析
转载请注明原文地址:https://kaotiyun.com/show/1py4777K
0
考研数学二
相关试题推荐
设矩阵B的列向量线性无关,且BA=C,则()。
下列微分方程中,以y=c1ex+c2e﹣xcos2x+c3e﹣xsin2x(c1,c2,c3为任意常数)为通解的是()
设A是m×s矩阵,B是s×n矩阵,则线性方程组ABx=0和Bx=0是同解方程组的一个充分条件是()
设f(χ)为连续函数,且χ2+y2+z2=∫χyf(χ+y-t)dt,则=_______.
已知n维向量组α1,α2,…,αs线性无关,则n维向量组β1,β2,…,βs也线性无关的充分必要条件为
设y(x)是微分方程y"+(x-1)y’+x2=ex,满足初始条件y(0)=0,y’(0)=1的解,则().
设y1(x)、y2(x)为二阶变系数齐次线性方程y’’+P(x)y’+q(x)y=0的两个特解,则C1y1(x)+C2y2(x)(C1,C2为任意常数)是该方程通解的充分条件为
线性方程组的通解司以表不为
设向量组α1,α2,α3为方程组AX=0的一个基础解系,下列向量组中也是方程组AX=0的基础解系的是().
(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b一a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0)
随机试题
血量分配比例最高的部位是()。
Ifyouhaveeverwonderedhowanelephantsmells,scientistshavetheanswer.ResearchershavediscoveredthatAfricanElephants
一般而言,影响中央与地方分权关系的主要是()
It’shightimethatwe______tobed;wehaveanexaminationtomorrowearlyinthemorning.
临床上应用局麻时在麻药中加入肾上腺素的作用如下,其中哪项可以除外
患者,男,45岁。左上后牙饮用冷、热水时疼痛,无自发痛。口腔检查:左上后牙未探及明显龋洞,叩诊(-),面远中牙体颜色稍显暗黑色。为确定诊断,应首先采用的辅助检查方法是
女性,58岁。反复胲嗽、咳痰、喘息32年,加重3天。查体:桶状胸,双肺满布哮鸣音,血气分析PaO258mmHg,PaCO255mmHg,此时该患者呼吸功能检查结果最可能的是
药品零售连锁企业( )。
下列权利中,不属于《消费者权益保护法》规定的消费者权利的是()。
港口与航道规模为大、中型工程项目的负责人()。
最新回复
(
0
)