首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3是四元非齐次线性方程组Ax=b的三个解向量,且r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表任意常数,则线性方程组Ax=b的通解x=( )
设α1,α2,α3是四元非齐次线性方程组Ax=b的三个解向量,且r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表任意常数,则线性方程组Ax=b的通解x=( )
admin
2019-03-11
55
问题
设α
1
,α
2
,α
3
是四元非齐次线性方程组Ax=b的三个解向量,且r(A)=3,α
1
=(1,2,3,4)
T
,α
2
+α
3
=(0,1,2,3)
T
,c表任意常数,则线性方程组Ax=b的通解x=( )
选项
A、
B、
C、
D、
答案
C
解析
因为α
1
=(1,2,3,4)
T
是非齐次方程组的解向量,所以有Aα
1
=b,故α
1
是Ax=b的一个特解。
又r(A)=3,n=4(未知量的个数),故Ax=b的基础解系由一个非零解组成。即基础解系的个数为1。
因为A[2α
1
一(α
2
+α
3
)]=2b一b—b=0,故2α
1
一(α
1
+α
2
)=
是对应齐次方程组的基础解系,故Ax=b的通解为
c[2α
1
一(α
2
+α
3
)]+α
1
=
。
转载请注明原文地址:https://kaotiyun.com/show/nkP4777K
0
考研数学三
相关试题推荐
一汽车沿一街道行驶,需要通过三个均设有红绿灯的路口.每个信号灯为红或绿与其他信号灯为红或绿相互独立,且红绿两种信号显示的时间相等.以X表示该汽车首次遇到红灯前已通过的路口个数,求X的概率分布.
已知α1=(1,1,1,0)T,α2=(0,1,2,1)T,α3=(3,1,-2,1)T线性无关,则将其正交化,有
设f(x)=a|cosx|+b|sinx|在x=一f2(x)dx=2,求常数a、b的值.
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明:(1)ξ1,ξ2∈(0,3),使得f’(ξ1)=f’(ξ2)=0.(2)存在ξ∈(0,3),使得f"(ξ)一2f’(ξ)=0.
设(I)和(Ⅱ)是两个四元齐次线性方程组,(I)的系数矩阵为(Ⅱ)的一个基础解系为η1=(2,一1,a+2,1)T,η2=(一1,2,4,a+8)T.a为什么值时(I)和(Ⅱ)有公共非零解?此时求出全部公共非零解.
(Ⅰ)求函数y(x)=1++…(一∞<x<+∞)所满足的二阶常系数线性微分方程;(Ⅱ)求(Ⅰ)中幂级数的和函数y(x)的表达式.
(Ⅰ)已知f(x)=,在(一∞,+∞)存在原函数,求常数A以及f(x)的原函数;(Ⅱ)设|y|<1,求F(y)=∫—11|x一y|exdx.
甲、乙二人轮流投篮,游戏规则规定为甲先开始,且甲每轮只投一次,而乙每轮连续投两次,先投中者为胜,设甲、乙每次投篮的命中率分别是P与0.5,则P=________时,甲、乙胜负概率相同.
设t>0,则当t→0时,是t的n阶无穷小量,则n为().
设A,B为随机事件,P(A)>0,则P(B|A)=1不等价于()
随机试题
A.异烟肼B.利福平C.吡嗪酰胺D.乙胺丁醇(2015年第142题)对结核分枝杆菌B菌群作用最强的药物是
A.养血活血B.补血益气C.行气养血D.活血止痛E.活血化瘀,散寒止痛产后腹痛气血两虚证的治法是
在一段时间内,在一定数目的危险单位中,可能遭受的损失次数或程度,通常以分数或百分数来表示的是()。
北宋陵葬有北宋9个皇帝。()
对任意实数a、b、c,定义运算a*b*c=ab—bc+ca,若1*x*2=2,则x=()。
损益相抵[复旦大学2020年研]
Imagineaworldinwhichweareassignedanumberthatindicateshowinfluentialweare.Thisnumberwouldhelpdetermine【C1】___
“在课程关系COURSE中,增加一门课程:(‘C01’,‘电子商务’,‘陈伟钢’)。,用关系代数表达式表示为:COuRsE+_-COuRsEu{(‘C01’,‘电子商务’,‘陈伟钢’)}。这是使用扩展关系操作中的
A、Becauseheisinterestedinthesubject.B、Becausehehasalreadywrittenapaperonit.C、Becausehedoesnotknowanythinga
TheTruthabouttheEnvironmentA)Formanyenvironmentalists,theworldseemstobegettingworse.Theyhavedevelopedahit-lis
最新回复
(
0
)