首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3是四元非齐次线性方程组Ax=b的三个解向量,且r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表任意常数,则线性方程组Ax=b的通解x=( )
设α1,α2,α3是四元非齐次线性方程组Ax=b的三个解向量,且r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表任意常数,则线性方程组Ax=b的通解x=( )
admin
2019-03-11
56
问题
设α
1
,α
2
,α
3
是四元非齐次线性方程组Ax=b的三个解向量,且r(A)=3,α
1
=(1,2,3,4)
T
,α
2
+α
3
=(0,1,2,3)
T
,c表任意常数,则线性方程组Ax=b的通解x=( )
选项
A、
B、
C、
D、
答案
C
解析
因为α
1
=(1,2,3,4)
T
是非齐次方程组的解向量,所以有Aα
1
=b,故α
1
是Ax=b的一个特解。
又r(A)=3,n=4(未知量的个数),故Ax=b的基础解系由一个非零解组成。即基础解系的个数为1。
因为A[2α
1
一(α
2
+α
3
)]=2b一b—b=0,故2α
1
一(α
1
+α
2
)=
是对应齐次方程组的基础解系,故Ax=b的通解为
c[2α
1
一(α
2
+α
3
)]+α
1
=
。
转载请注明原文地址:https://kaotiyun.com/show/nkP4777K
0
考研数学三
相关试题推荐
证明:若一个向量组中有一个部分向量组线性相关,则该向量组一定线性相关.
(1)如果矩阵A用初等列变换化为B,则A的列向量组和B的列向量组等价.(2)如果矩阵A用初等行变换化为B,则A的行向量组和B的行向量组等价.
设A,B是两个n阶实对称矩阵,并且A正定.证明:存在可逆矩阵P,使得PTAP,PTBP都是对角矩阵;
设F(x)=,试求:(Ⅰ)F(x)的极值;(Ⅱ)曲线y=F(x)的拐点的横坐标;(Ⅲ)∫—23x2F’(x)dx.
(Ⅰ)设X与Y相互独立,且X~N(5,15),Y~χ2(5),求概率P{X一5>};(Ⅱ)设总体X~N(2.5,62),X1,X2,X3,X4,X5是来自X的简单随机样本,求概率P{(1.3<<3.5)∩(6.3<S2<9.6)}.
设随机事件A与B互不相容,且P(A)>0,P(B)>0,则下列结论中一定成立的是
设A是一个n阶方阵,满足A2=A,R(A)=r,且A有两个不同的特征值.(Ⅰ)试证A可对角化,并求对角阵A;(Ⅱ)计算行列式|A-2E|.
1利用等价无穷小量替换将极限式进行化简,即
设f(x)在x=0的邻域内有定义,f(0)=1,且=0,则f(x)在x=0处().
设f(x)可导,则当△x→0时,△y-dy是△x的().
随机试题
若检查洞底,位于牙本质浅层牙髓活力良好,可诊断为若患者为根面中龋,效果最好的治疗是
A.巧克力琼脂培养基B.沙保培养基C.普通琼脂培养基D.罗-琴培养基E.庖肉培养基培养结核杆菌用
水体污染物的转化是指
A.中央前回B.黑质—纹状体C.颞叶D.枕叶E.小脑
典型麻疹的出疹顺序为()
关于犯罪停止形态的论述,下列哪些选项是正确的?(2012年卷二54题,多选)
基本会计核算账簿管理包括()的查询及打印。
"MoneyMattersonCampus"isarecentlyreleasedstudyonfinancialliteracyamongyoungadults.Itsupportsprovidingstudents
Howdoesliterarystyleevolve?Surprisingly,【C1】______lieinwordswithseeminglylittlemeaning,suchas"to"and"that".
Directions:Thecomputerplaysanimportantroleinourlife.Itbringsgreatconveniencetopeople’slife.However,itexertss
最新回复
(
0
)