首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是4×5矩阵,α1,α2,α3,α4,α5是A的列向量组,r(α1,α2,α3,α4,α5)=3,则( )正确。
设A是4×5矩阵,α1,α2,α3,α4,α5是A的列向量组,r(α1,α2,α3,α4,α5)=3,则( )正确。
admin
2017-10-21
62
问题
设A是4×5矩阵,α
1
,α
2
,α
3
,α
4
,α
5
是A的列向量组,r(α
1
,α
2
,α
3
,α
4
,α
5
)=3,则( )正确。
选项
A、A的任何3个行向量都线性无关.
B、α
1
,α
2
,α
3
,α
4
,α
5
的一个含有3个向量的部分组(I)如果与α
1
,α
2
,α
3
,α
4
,α
5
等价则一定是α
1
,α
2
,α
3
,α
4
,α
5
的最大无关组.
C、A的3阶子式都不为0.
D、α
1
,α
2
,α
3
,α
4
,α
5
的线性相关的部分组含有向量个数一定大于3.
答案
B
解析
r(α
1
,α
2
,α
3
,α
4
,α
5
)=3,说明α
1
,α
2
,α
3
,α
4
,α
5
的一个部分组如果包含向量超过3个就一定相关,但是相关不一定包含向量超过3个.D不对.r(α
1
,α
2
,α
3
,α
4
,α
5
)=3,则A的行向量组的秩也是3,因此存在3个行向量线悱无父,但是不是任何3个行向量都线性无关.排除A.A的秩也是3,因此有3阶非零子式,但是并非每个3阶子式都不为0,C也不对.下面说明B对.(I)与α
1
,α
2
,α
3
,α
4
,α
5
等价,则(I)的秩=r(α
1
,α
2
,α
3
,α
4
,α
5
)=3=(I)中向量的个数,于是(I)线性无关,由定义(I)是最大无关组.
转载请注明原文地址:https://kaotiyun.com/show/odH4777K
0
考研数学三
相关试题推荐
设α1,α2,…,αm,β1,β2,…,βn线性无关,而向量组α1,α2,…,αm,γ线性相关.证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
二次型f(x1,x2,x3)=x12+ax22+x32—4x1x2—8x1x3—4x2x3经过正交变换化为标准形5y12+by22一4y32,求:(1)常数a,b;(2)正交变换的矩阵Q.
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵). 求:(1)二次型XTAX的标准形;(2)|E+A+A2+…+An|的值.
设A,B为三阶矩阵,且特征值均为一2,1,1,以下命题:(1)A~B;(2)A,B合同;(3)A,B等价;(4)|A|=|B|中正确的命题个数为().
设A=有三个线性无关的特征向量.(1)求a;(2)求A的特征向量;(3)求可逆矩阵P,使得P—1AP为对角阵.
设A为三阶矩阵,Aαi=iαi(i=1,2,3),,求A.
设A=(1)若ai≠aj(i≠j),求ATX=b的解;(2)若a1=a3a≠0,a2=a4=一a,求ATX=b的通解.
设A=,且AX=0的基础解系含有两个线性无关的解向量,求AX=0的通解.
设A是3×4矩阵且r(A)=1,设(1,一2,1,2)T,(1,0,5,2)T,(一1,2,0,1)T,(2,一4,3,a+1)T皆为AX=0的解.(1)求常数a;(2)求方程组AX=0的通解.
设求f’(x)并讨论其连续性.
随机试题
英国公民甲与美国公民乙在新加坡注册结婚,婚后二人来华工作,两年后,双方因感情不和诉讼至中国法院请求离婚,双方对离婚无异议,对于双方位于新加坡的财产归属问题产生争议,则中国法院应适用()
关于幽门管溃疡的描述,正确的是
A.蚊B.蜱C.蚤D.虱E.螨伯道疏螺旋体的传播媒介是
发生细菌性肝脓肿时,细菌侵入肝最主要的途径是
著名认知心理学家安德森认为,心智技能的形成经过认知阶段、______阶段和自动化阶段。
孙某丈夫外出做买卖五年未归,也没有任何音讯,孙某欲改嫁,下面说法正确的是()。
《自由大宪章》
8x²+10xy-3y²是49的倍数。(1)x,y都是整数(2)4x-7是7的倍数
B组任选一题,论述字数在600字左右简论“印象派”音乐的特征。
19世纪60年代至90年代,中国的洋务派创办的企业具有()
最新回复
(
0
)