首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是4×5矩阵,α1,α2,α3,α4,α5是A的列向量组,r(α1,α2,α3,α4,α5)=3,则( )正确。
设A是4×5矩阵,α1,α2,α3,α4,α5是A的列向量组,r(α1,α2,α3,α4,α5)=3,则( )正确。
admin
2017-10-21
54
问题
设A是4×5矩阵,α
1
,α
2
,α
3
,α
4
,α
5
是A的列向量组,r(α
1
,α
2
,α
3
,α
4
,α
5
)=3,则( )正确。
选项
A、A的任何3个行向量都线性无关.
B、α
1
,α
2
,α
3
,α
4
,α
5
的一个含有3个向量的部分组(I)如果与α
1
,α
2
,α
3
,α
4
,α
5
等价则一定是α
1
,α
2
,α
3
,α
4
,α
5
的最大无关组.
C、A的3阶子式都不为0.
D、α
1
,α
2
,α
3
,α
4
,α
5
的线性相关的部分组含有向量个数一定大于3.
答案
B
解析
r(α
1
,α
2
,α
3
,α
4
,α
5
)=3,说明α
1
,α
2
,α
3
,α
4
,α
5
的一个部分组如果包含向量超过3个就一定相关,但是相关不一定包含向量超过3个.D不对.r(α
1
,α
2
,α
3
,α
4
,α
5
)=3,则A的行向量组的秩也是3,因此存在3个行向量线悱无父,但是不是任何3个行向量都线性无关.排除A.A的秩也是3,因此有3阶非零子式,但是并非每个3阶子式都不为0,C也不对.下面说明B对.(I)与α
1
,α
2
,α
3
,α
4
,α
5
等价,则(I)的秩=r(α
1
,α
2
,α
3
,α
4
,α
5
)=3=(I)中向量的个数,于是(I)线性无关,由定义(I)是最大无关组.
转载请注明原文地址:https://kaotiyun.com/show/odH4777K
0
考研数学三
相关试题推荐
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aβ1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
设α1,…,αn为n个m维向量,且m<n.证明:α1…,αn线性相关.
设f(x)在[1,2]上连续,在(1,2)内可导,证明:存在ξ∈(1,2),使得∈f’(ξ)一f(ξ)=f(2)一2f(1).
设二次型f(x1,x2,x3)=XTAX,A的主对角线上元素之和为3,又AB+B=O,其中(1)求正交变换X=QY将二次型化为标准形;(2)求矩阵A.
设A为n阶非零矩阵,且存在自然数k,使得Ak=0.证明:A不可以对角化.
设A=有三个线性无关的特征向量,求x,y满足的条件.
设非零n维列向量α,β正交且A=αβT.证明:A不可以相似对角化.
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求AX=0的一个基础解系.
设A为三阶矩阵,A的特征值为λ1=1,λ2=2,λ3=3,其对应的线性无关的特征向量分别为,求Anβ.
,求A的全部特征值,并证明A可以对角化.
随机试题
我国金融债券的发行进行了一些探索性改革,具体表现为()。
同一投资者的偏好无差异曲线可能相交。()
海宁皮影源于北宋,是江南皮影的典型代表。()
试述行政执法的基本原则。
中华人民共和国人民检察院是国家的法律监督机关。下列关于人民检察院职权的说法,正确的有()。
晴天:多云:阴天
Differentcountrieshavedifferentcultures.Asamegesturemayhavedistinctmeaningsindifferentcountries.Forinstance,in
Whatisthewomangoingtodo?
Speechacttheorywasfirstproposedby______.
ThepassagemainlyintroducestheblogphenomenonanditsinfluenceinChina.Internetcafesarespreadingrapidlyduetotheo
最新回复
(
0
)