首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4是3维非零向量,则下列说法正确的是
设α1,α2,α3,α4是3维非零向量,则下列说法正确的是
admin
2016-10-26
78
问题
设α
1
,α
2
,α
3
,α
4
是3维非零向量,则下列说法正确的是
选项
A、若α
1
,α
2
线性相关,α
3
,α
4
线性相关,则α
1
+α
3
,α
2
+α
4
也线性相关.
B、若α
1
,α
2
,α
3
线性无关,则α
1
+α
4
,α
2
+α
4
,α
3
+α
4
线性无关.
C、若α
4
不能由α
1
,α
2
,α
3
线性表出,则α
1
,α
2
,α
3
线性相关.
D、若α
1
,α
2
,α
3
,α
4
中任意三个向量均线性无关,则α
1
,α
2
,α
3
,α
4
线性无关.
答案
C
解析
若α
1
=(1,0),α
2
=(2,0),α
3
=(0,2),α
4
=(O,3),则α
1
,α
2
线性相关,α
3
,α
4
线性相关,但α
1
+α
3
=(1,2),α
2
+α
4
=(2,3)线性无关.故(A)不正确.
对于(B),取α
4
=-α
1
,即知(B)不对.
对于(D),可考察向量组(1,0,0),(0,1,0),(0,0,1),(一1,一1,一1),可知(D)不对.
至于(C),因为4个3维向量必线性相关,如若α
1
,α
2
,α
3
线性无关,则α
4
必可由α
1
,α
2
,α
3
线性表出.现在α
4
不能由α
1
,α
2
,α
3
线性表出,故α
1
,α
2
,α
3
必线性相关.故应选(C).
转载请注明原文地址:https://kaotiyun.com/show/nmu4777K
0
考研数学一
相关试题推荐
甲袋中有2个白球,乙袋中有2个黑球,每次从各袋中任取一球交换后放人另一袋中,共交换3次,用X表示3次交换后甲袋中的白球数,求X的概率分布.
设函数f(x)在[a,b]上连续,且在(a,b)内有fˊ(x)>0.证明:在(a,b)内存在唯一的ε,使曲线y=f(x)与两直线y=f(ε),x=a所围平面图形面积s1是曲线y=f(x)与两直线y=f(ε),x=b所围平面图形面积S2的3倍.
被积函数的分子与分母同乘以一个适当的因式,往往可以使不定积分容易求,用这种方法求下列不定积分:
设y=y(x)是函数方程ln(x2+y2)=x+y-1在(O,1)处所确定的隐函数,求dy及dy|(0,1).
由Y=lgx的图形作下列函数的图形:
设函数f(x)在(-∞,+∞)内具有一阶连续导数,L是上半平面(y>0)内的有向分段光滑曲线,其起点为(a,b),终点为(c,d),记当ab=cd时,求I的值.
计算曲面积分2x3dydz+2y3dzdx+3(z2-1)dxdy,其中∑是曲面z=1-x2-y2(z≥0)的上侧.
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.计算并化简PQ;
求极限
(I)设A,B为n阶可相似对角化矩阵,且有相同特征值,证明:矩阵A,B相似.(Ⅱ)设求可逆矩阵P,使得P-1AP=B.
随机试题
阵发性室上性心动过速可选用
下列有关计算机病毒的叙述中,正确的是()
Don’tputoffuntiltomorrow______shouldbedonetoday.
轻度焦虑恐慌
某患者戴用全口义齿1周,主诉左侧后牙经常咬腮,无其他不适。最可能的原因是
口服避孕药的作用最可能是( )。带铜IUD的作用是( )。
A.银翘散加减B.羚角钩藤汤合紫雪丹加减C.清瘟败毒饮加减D.黄连解毒汤加减E.琥珀抱龙丸加减小儿急惊风邪陷心肝证的治疗方剂为
背景资料: 某施工单位承接了一项无线网建设工程,包括基站设备安装及部分传输系统建设。监理人员在检查架空线路时发现一段线路不符合验收规范(如图1—1所示),要求施工队整改;检查基站现场时发现不同铁塔站点GPS天线安装位置不一致,共有E、F、G、H四种位置情
甲乙丙三村分别按20%、30%、50%的比例共同投资兴建一座水库,蓄水量10万立方米,约定用水量按投资比例分配。某年夏天,丙村与丁村约定当年7月中旬丙从自己的用水量中向丁供应灌溉用水1万立方米,丁村支付价款1万元。供水时,水渠流经戊村,戊村将水全部截流灌溉
Cultureshockmightbecalledan【1】diseaseofpeoplewhohavebeensuddenly【2】abroad.Likemostailments,ithasitsown【3】andc
最新回复
(
0
)