首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足 Aa1=α1+α2+α3,Aa2=2α2+α3,Aa3=2α2+3α3. (1)求作矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B. (2)求A的特征值.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足 Aa1=α1+α2+α3,Aa2=2α2+α3,Aa3=2α2+3α3. (1)求作矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B. (2)求A的特征值.
admin
2018-11-23
65
问题
设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量组,满足
Aa
1
=α
1
+α
2
+α
3
,Aa
2
=2α
2
+α
3
,Aa
3
=2α
2
+3α
3
.
(1)求作矩阵B,使得A(α
1
,α
2
,α
3
)=(α
1
,α
2
,α
3
)B.
(2)求A的特征值.
(3)求作可逆矩阵P,使得P
-1
AP为对角矩阵.
选项
答案
(1)在第二章中,已经用矩阵分解求出 B=[*] (2)由于α
1
,α
2
,α
3
线性无关,(α
1
,α
2
,α
3
)是可逆矩阵,并且(α
1
,α
2
,α
3
)
-1
A(α
1
,α
2
,α
3
)=B,因此A和B相似,特征值相同. |λE-B|=[*]=(λ-1)(λ
2
-5λ+4)=(λ-1)
2
(λ-4). B的特征值为1,1,4.A的特征值也为1,1,4 (2)先把B对角化.求出B的属于1的两个无关的特征向量(1,-1,0)
T
,(0,2,-1)
T
;求出B的属于4的一个特征向量(0,1.1)
T
.构造矩阵 [*] 令P=(α
1
,α
2
,α
3
)D=(α
1
-α
2
,2α
2
-α
3
,α
2
+α
3
),则 P
-1
AP=D
-1
(α
1
,α
2
,α
3
)A(α
1
,α
2
,α
3
)D =D
-1
BD=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/nnM4777K
0
考研数学一
相关试题推荐
将旅店的房租价格从每天75元提高到每天80元,会使出租量从每天100套降到每天90套.(1)求房租为每天75元时的需求价格弹性;(2)求房租分别为每天75元和80元时旅店的总收益;(3)问该旅店是否应该提价?
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
证明:当x>0时,.
设X和Y是相互独立的随机变量,其概率密度分别为其中λ>0,μ>0是常数,引入随机变量求E(Z)和D(Z).
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B。(Ⅰ)证明B可逆;(Ⅱ)求AB-1。
若在区间(0,1)上随机地取两个数u,ν,则关于x的一元二次方程x2一2νx+u=0有实根的概率为________.
已知X,Y为随机变量且P{X≥0,Y≥0}=,P{X≥0}=P{Y≥0}=,设A={max(X,Y)≥0},B={max(X,Y)<0,min(X,Y)<0},C={max(X,Y)≥0,min(X,Y)<0},则P(A)=________,P(B)=__
求下列行列式的值:
已知α1,α2均为2维向量,矩阵A=[2α1+α2,α1一α2],β=[α1,α2],若行列式|A|=6,则|B|=____
(88年)设4×4矩阵A=(αγ2γ3γ4),B=(βγ2γ3γ4),其中α,β,γ2,γ3,γ4均为4维列向量,且已知行列式|A|=4,|B|=1,则行列式|A+B|=______.
随机试题
下列关于性激素的周期性变化的叙述,正确的是
美国《统一商法典》的制定主体是()
女,28岁。婚后4年怀孕。月经初潮12岁,5年前起月经稀发、经量减少,近2年闭经,体重增加8kg。查体:BP120/80mmHg,BMI26。双乳有触发泌乳。最可能的诊断是
我国已经建成的多层次的股票市场包括()。
给定材料1.2013年6月以来,A县实行县级公立医院改革,全面叫停“以药补医”。84岁的吕大娘多年来一直患有糖尿病,需要每天服药。在中医院门诊部遇到吕大娘时,她刚拿完药出来,药费单上显示吕大娘花费了382元。而同样的药品。在改革以前要多花52元。提到零
下列属于短期资金市场的是()。
传输层的主要任务是()。
软件维护活动包括以下儿类:改正性维护、适应性维护、()维护和预防性维护。
为了保存数据,需打开顺序文件“E:\UserData.txt”,以下正确的命令是
IfyouareayoungishmanwhositsonaEuropeancorporateboard,youshouldworry:thechancesarethatyourchairmanwantsto
最新回复
(
0
)