首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(Ⅰ)α1,α2,α3; (Ⅱ)α1,α2,α3,α4; (Ⅲ)α1,α2,α3,α5,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4. 证明:向量组α1,α2,α3,α5-α4的秩为4.
设向量组(Ⅰ)α1,α2,α3; (Ⅱ)α1,α2,α3,α4; (Ⅲ)α1,α2,α3,α5,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4. 证明:向量组α1,α2,α3,α5-α4的秩为4.
admin
2018-05-21
57
问题
设向量组(Ⅰ)α
1
,α
2
,α
3
;
(Ⅱ)α
1
,α
2
,α
3
,α
4
;
(Ⅲ)α
1
,α
2
,α
3
,α
5
,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.
证明:向量组α
1
,α
2
,α
3
,α
5
-α
4
的秩为4.
选项
答案
因为向量组(Ⅰ)的秩为3,所以α
1
,α
2
,α
3
线性无关,又因为向量组(Ⅱ)的秩也为3,所以向量α
4
可由向量组α
1
,α
2
,α
3
线性表示.因为向量组(Ⅲ)的秩为4,所以α
1
,α
2
,α
3
,α
5
线性无关,即向量α
5
不可由向量组α
1
,α
2
,α
3
线性表示,故向量α
5
-α
4
不可由α
1
,α
2
,α
3
线性表示,所以α
1
,α
2
,α
3
,α
5
-α
4
线性无关,于是向量组α
1
,α
2
,α
3
,α
5
-α
4
的秩为4.
解析
转载请注明原文地址:https://kaotiyun.com/show/npr4777K
0
考研数学一
相关试题推荐
设函数f(x)在[a,b]上连续,在(a,b)内可导且f(A)≠f(B),试证明存在η,ξ∈(a,b),使得
A、P1P3AB、P2P3AC、AP3P2D、AP1P3B矩阵A作两次行变换可得到矩阵B,而AP3P2和AP1P3是对矩阵A作列变换,故应排除C,D。把矩阵A的第1行的2倍加至第3行,再将1,2两行互换得到矩阵B;或者把矩阵A的1,2两行互换后,再
设A,B为三阶相似矩阵,且|2B+A|=0,λ1=1,λ2=一1为B的两个特征值,则行列式|A+2AB|=________。
设f(x)是连续函数.(1)利用定义证明函数F(x)=∫0xf(t)dt可导,且F’(x)=f(x).(2)当f(x)是以2为周期的周期函数时,证明函数G(x)=2∫0xf(t)dt一x∫02f(t)dt也是以2为周期的周期函数.
设D={(x,y)|a≤x≤b,c≤y≤d},若f"xy与f"yx在D上连续,证明
已知向量a,b相互平行但方向相反,且|a|>|b|>0,则必有()
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.(Ⅰ)求矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B;(Ⅱ)求矩阵A的特征值;(Ⅲ)求可逆矩阵P,使
设A为3阶实对称矩阵,若存在正交矩阵Q,使得QTAQ=,又已知A的伴随矩阵A*有一个特征值为λ=1,相应的特征向量为α=(1,1,1)T.求二次型xT(A*)-1x的表达式,并确定其正负惯性指数.
设A为3阶实对称矩阵,若存在正交矩阵Q,使得QTAQ=,又已知A的伴随矩阵A*有一个特征值为λ=1,相应的特征向量为α=(1,1,1)T.求正交矩阵Q
随机试题
管道投入使用前为什么要进行干燥?
单模光纤的纤芯直径是:8μm至()
疱疹样口疮与疱疹性口炎的鉴别要点不包括()
关于痴呆的临床特点,最正确的是
患者,女性,34岁。清晨起床解黑便一次,量约100g,遂来就诊。既往病史无慢性胃炎和消化性溃疡,但有关节肿痛2年。此时评估患者最重要的是询问()
在城镇体系规划中,城市金字塔与城镇体系规划()部分的内容密切相关。
发生火灾时,干式自动喷水灭火系统的喷头先喷洒()。
导游塑造良好的仪容仪表应()。
教学过程中,教师给学生以足够的关注和期望,学生在得到激励和赏识后常常表现出积极学习的行为。这种心理效应是()。
Infact"trickortreat"is______.Protestantgunmenmade______inNorthernIrelandsincethebombing.
最新回复
(
0
)