首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求一个正交变换,化二次型 f=x12+4x22+4x32一4x1x2+4x1x3—8x2x3 成标准形。
求一个正交变换,化二次型 f=x12+4x22+4x32一4x1x2+4x1x3—8x2x3 成标准形。
admin
2018-08-03
52
问题
求一个正交变换,化二次型
f=x
1
2
+4x
2
2
+4x
3
2
一4x
1
x
2
+4x
1
x
3
—8x
2
x
3
成标准形。
选项
答案
f的矩阵为 [*] 得A的全部特征值为λ
1
=λ
2
=0,λ
3
=9. 对于λ
1
=λ
2
=0,求方程组(0E—A)X=0的基础解系,由 [*] 从而可取A的对应于λ
1
=λ
2
=0的特征向量为 [*] ξ
1
与ξ
2
已经正交,将它们单位化,得 [*] 对于λ
3
=9,求方程组(9E—A)X=0的基础解系,由 [*] 可取对应于λ
3
=9的特征向量为 ξ
3
=(1,一2,2)
T
将其单位化,p
3
=[*] 令矩阵P=[p
1
p
2
p
3
],则P为正交矩阵,在正交变换X=PY,即 [*] 下,二次型f化成为f=9y
3
2
,此即为f的标准形.
解析
转载请注明原文地址:https://kaotiyun.com/show/nrg4777K
0
考研数学一
相关试题推荐
设f(x)在[a,+∞)上连续,f(a)<0,而存在且大于零.证明:f(x)在(a,+∞)内至少有一个零点.
设A=(aij)n×n是非零矩阵,且|A|中每个元素aij与其代数余子式Aij相等.证明:|A|≠0.
设A为n阶矩阵,k为常数,则(kA)*等于().
令A=[*],方程组(I)可写为AX=b,方程组(II)、(III)可分别写为ATY=0及[*]=0.若方程组(I)有解,则r(A)=r(A:b),从而r(AT)=[*],又因为(Ⅲ)的解一定为(Ⅱ)的解,所以(Ⅱ)与(III)同解;反之,若(Ⅱ)与
a,b取何值时,方程组有解?
假设随机事件A与B相互独立,P(A)=P=a一1,P(A∪B)=,求a的值.
在全概率公式P(B)=P(Ai)P(B|AI)中,除了要求条件B是任意随机事件及P(Ai)>0(i=1,2,…,n)之外,我们可以将其他条件改为
设二维正态随机变量(X,Y)的概率密度为f(x,y),已知条件概率密度fX|Y(x|y)=.试求:(Ⅰ)常数A和B;(Ⅱ)fX(x)和fY(y);(Ⅲ)f(x,y).
已知向量组有相同的秩,且β3可由α1,α2,α3线性表出,求a,b的值.
设A=(aij)是秩为n的n阶实对称矩阵,Aij是|A|中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=xjxj.(Ⅰ)记X=(x1,x2,…,xn)T,试写出二次型f(x1,x2,…,xn)的矩阵形式;(Ⅱ)判断
随机试题
中压废热锅炉的蒸汽压力为()。
A.机械性刺激敏感B.突发性电击样痛C.定点性咀嚼剧痛D.疼痛不定位,夜间加重E.刺痛人洞引起疼痛下述疾病可能出现的疼痛描述正确的是深龋
赵某与罗某系邻居。两人因日常小事纠纷不断。某日,两人又起纠纷,争吵中罗某抄起木棍,打在赵某头上,致使其严重脑震荡,左耳失聪,赵某因此受重伤而向公安机关报案。公安机关认为本案系邻里纠纷,以民事调解为宜,不予立案。赵某即将本案诉至人民法院。下列选项中,哪一项不
当电梯轿厢使用玻璃轿壁时,必须安装()高度的扶手。
你认为最重要的样品是()
环境创设中,幼儿与教师共同合作,共同参与,符合幼儿环境创设的()原则。
森林效应:一棵树如果单独生长在一个地方,往往比较矮小、畸形,而当众多树木生长在一起、,共用水源的时候,往往能长得郁郁葱葱。请问“森林效应”对你有什么启示?
长期以来,我国城市管理执法体制弊端多多,部门林立,各管一摊。管市容的不管破坏绿化的,管破坏绿化的不管违章建设,管违章建设的不管街头无照摆摊……而许多违法问题的处理又常常涉及几个执法部门。比如,对于马路市场,工商、交通、市容等执法部门都可以管,叉都可以不管。
用来控制、指挥和协调计算机各部件工作的是()。
HIV&AIDS[A]AIDShasnowsurpassedtheBlackDeathonitscoursetobecometheworstpandemicinhumanhistory.Attheendof
最新回复
(
0
)