首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求一个正交变换,化二次型 f=x12+4x22+4x32一4x1x2+4x1x3—8x2x3 成标准形。
求一个正交变换,化二次型 f=x12+4x22+4x32一4x1x2+4x1x3—8x2x3 成标准形。
admin
2018-08-03
47
问题
求一个正交变换,化二次型
f=x
1
2
+4x
2
2
+4x
3
2
一4x
1
x
2
+4x
1
x
3
—8x
2
x
3
成标准形。
选项
答案
f的矩阵为 [*] 得A的全部特征值为λ
1
=λ
2
=0,λ
3
=9. 对于λ
1
=λ
2
=0,求方程组(0E—A)X=0的基础解系,由 [*] 从而可取A的对应于λ
1
=λ
2
=0的特征向量为 [*] ξ
1
与ξ
2
已经正交,将它们单位化,得 [*] 对于λ
3
=9,求方程组(9E—A)X=0的基础解系,由 [*] 可取对应于λ
3
=9的特征向量为 ξ
3
=(1,一2,2)
T
将其单位化,p
3
=[*] 令矩阵P=[p
1
p
2
p
3
],则P为正交矩阵,在正交变换X=PY,即 [*] 下,二次型f化成为f=9y
3
2
,此即为f的标准形.
解析
转载请注明原文地址:https://kaotiyun.com/show/nrg4777K
0
考研数学一
相关试题推荐
设f(x)在[0,1]上二阶可导,且f(0)=f’(0)=f(1)=f’(1)=0.证明:方程f"(x)一f(x)=0在(0,1)内有根.
设f(x)在[a,+∞)上连续,且存在.证明:f(x)在[a,+∞)上有界.
设A,B分别为m×n及n×s阶矩阵,且AB=O.证明:r(A)+r(B)≤n.
设A,B为三阶矩阵,且A~B,且λ1=1,λ2=2为A的两个特征值,|B|=2,求
质量为1g的质点受外力作用作直线运动,外力和时间成正比,和质点的运动速度成反比,在t=10s时,速度等于50cm/s.外力为39.2cm/s2,问运动开始1min后的速度是多少?
[*]则(Ⅱ)可写为BY=0,因为β1,β2,…,βn为(I)的基础解系,因此r(A)=n,β1,β2,…,βn线性无关,Aβ1=Aβ2=…=Aβn=0→A(β1,β2,…,βn)=O→ABT=O→BAT=O.→α1,α2,…,αn为BY=O的一组解,而
设点A(1,0,0),B(0,1,1),线段AB绕x轴一周所得旋转曲面为S.(1)求旋转曲面的方程;(2)求曲面S介于平面z=0与z=1之间的体积.
设平面曲线L上一点M处的曲率半径为ρ,曲率中心为A,AM为L在点M处的法线,法线上的两点P,Q分别位于L的两侧,其中P在AM上,Q在AM的延长线AN上,若P,Q满足|AP|.|AQ|=ρ2,称P,Q关于L对称.设L:y=.(1)求点M,使得L在M
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.(Ⅰ)求矩阵A的特征值;(Ⅱ)求可逆矩阵P使P-1AP=A.
已知实二次型f=(a11x1+a12x2+a13x3)2+(a21x1+a22x2+a23x3)2+(a31x1+a32x2+a33x3)2正定,矩阵A=(aij)3×3,则()
随机试题
下列哪项不是造成肝硬化门脉高压的原因:
宜存放在加盖的瓷罐中的饮片是
内脏大神经主要终于()。
A.药时曲线下面积B.消除半衰期C.分布半衰期D.表观分布容积E.生物利用度弃奶期与兽药在奶牛乳汁中的药代动力学参数密切相关的是()
男,30岁,头部外伤6小时,伤后有一过性意识障碍,3小时后再次出现昏迷。检查左颞部头皮血肿,左瞳孔散大。CT扫描显示左侧颞叶硬膜外血肿。颞叶硬膜外血肿可引起
有内在拟交感活性的p受体阻滞剂是
甲(15岁)见妇女乙边走路边打手机,趁其不备夺取乙的手机就跑,乙紧追并将甲抓住,甲捡起一块砖头将乙头砸破,经鉴定为重伤。甲的行为:
通货膨胀的直接原因是()。
1月8日7时36分左右,在福建食堂西侧主干道上,泡花碱厂员工厉业忠在去往碱厂上班的路上,被外来物流车辆车牌号为鲁D26276的送煤车在左拐弯的时候碰倒,并被车辆前轮轧断右腿。事发后,保卫部值班班长朱玉鹏在第一时间汇报保卫部主管孙昂,孙昂随即带领保安到现场
Whatisimportantwhen...?Establishingacompany’simage-Enhancingpublicity-Improvingproductionquality--
最新回复
(
0
)