首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知三元二次型f=xTAx的秩为2,且 求此二次型的表达式,并求正交变换x=Qy化二次型为标准形。
已知三元二次型f=xTAx的秩为2,且 求此二次型的表达式,并求正交变换x=Qy化二次型为标准形。
admin
2018-12-19
62
问题
已知三元二次型f=x
T
Ax的秩为2,且
求此二次型的表达式,并求正交变换x=Qy化二次型为标准形。
选项
答案
二次型x
T
Ax的秩为2,即r(A)=2,所以λ=0是A的特征值。 [*] 所以3是A的特征值,(1,2,1)
T
是与3对应的特征向量;一1也是A的特征值,(1,一1,1)
T
是与一1对应的特征向量。 因为实对称矩阵不同特征值的特征向量相互正交,设λ=0的特征向量是(x
1
,x
2
,x
3
)
T
,则有 [*] 由方程组[*]解出λ=0的特征向量是(1,0,一1)
T
,那么 [*] 所以 [*] 因此 x
T
Ax=[*](x
1
2
+10x
2
2
+x
3
2
+16x
1
x
2
+2x
1
x
3
+16x
2
x
3
), 则令 [*] 所以经正交变换x=Qy,有x
T
Ax=y
T
Λy=3y
1
2
一y
3
2
。
解析
转载请注明原文地址:https://kaotiyun.com/show/oAj4777K
0
考研数学二
相关试题推荐
(2010年)设m,n均是正整数,则反常积分的收敛性【】
(2010年)(Ⅰ)比较∫01|lnt|[ln(1+t)]ndt与∫01tn|lnt|dt(n=1,2,…)的大小,说明理由;(Ⅱ)记un=∫01|lnt|[ln(1+t)]ndt(n=1,2,…),求极限un.
(2013年)设当a,b为何值时,存在矩阵C使得AC-CA=B,并求所有矩阵C.
(2005年)已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=O,求线性方程组Aχ=0的通解.
(1998年)设y=f(χ)是区间[0,1]上任一非负连续函数.(1)试证存在χ0∈(0,1),使得在区间在区间[0,χ0]上以f(χ0)为高的矩形的面积等于在区间[χ0,1]上以y=f(χ)为曲面的曲边梯形的面积.(2)又设f(χ)在
(2013年)设二次型f(χ1,χ2,χ3)=2(a1χ1+a2χ2+a3χ3)+(b1χ1+b2χ2+b3χ3)2,记(Ⅰ)证明二次型f对应的矩阵为2ααT+ββT.(Ⅱ)若α,β正交且均为单位向量,证明f在正交变换下的标准形为
(2003年)已知y=是微分方程y′=的解,则φ()的表达式为【】
方程y(4)一2y"’一3y=e一3x一2e一x+x的特解形式(其中a,b,c,d为常数)是()
设y1=ex,y2=x2为某二阶线性齐次微分方程的两个特解,则该微分方程为____________.
二次型f(x1,x2,x3)=(a1x1+a2x2+ax3x3)(b1x1+b2x2+b3x3)的矩阵为__________。
随机试题
对已解密的不属于本机关、本单位产生的国家秘密事项,需要公开的,应当经()同意。
车辆二级维护前应进行检测诊断和技术评定,根据结果,确定附加作业或小修项目,结合二级维护一并进行。()
设总体X服从参数是λ的指数分布,x1,x2,…,xn为来自X的样本,为样本均值,则E()=________
病理医师进行尸检诊断时应先了解
下列有三种类型的化合物,其量一效应(反应)关系曲线的特征不同的是()
A.企业法定代表人B.质量管理、验收、采购人员C.营业员D.中药饮片调剂人员在药品零售企业中具有药学或医学、生物、化学等相关专业学历或者具有药学专业职称的是
()投资者对风险承受度最低,安全性是其最重要的考虑因素。
长河公司和甲公司均为增值税一般纳税人,办公楼适用的增值税税率为9%,自2019年4月1日起,增值税一般纳税人取得不动产或者不动产在建工程的进项税额一次性抵扣当年税款,不再分2年抵扣;此前按照上述规定尚未抵扣完毕的待抵扣进项税额,可自2019年4月税款所属期
在教学评价中,教师、学生、家长都参与的评价方式是()。
A、 B、 C、 D、 C
最新回复
(
0
)