首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组(Ⅰ)为又已知齐次线性方程组(Ⅱ)的基础解系为α1=(0,1,1,0)T,α2=(-1,2,2,1)T.试问a,b为何值时,(Ⅰ)与(Ⅱ)有非零公共解?并求出所有的非零公共解.
设齐次线性方程组(Ⅰ)为又已知齐次线性方程组(Ⅱ)的基础解系为α1=(0,1,1,0)T,α2=(-1,2,2,1)T.试问a,b为何值时,(Ⅰ)与(Ⅱ)有非零公共解?并求出所有的非零公共解.
admin
2016-01-23
89
问题
设齐次线性方程组(Ⅰ)为
又已知齐次线性方程组(Ⅱ)的基础解系为α
1
=(0,1,1,0)
T
,α
2
=(-1,2,2,1)
T
.试问a,b为何值时,(Ⅰ)与(Ⅱ)有非零公共解?并求出所有的非零公共解.
选项
答案
由齐次线性方程组(Ⅱ)的基础解系可得 (α
1
,α
2
)=[*] 以x
3
,x
4
为自由变量,则上述基础解系可由以下等价方程组得到 [*] 去掉x
3
,x
4
两个自由变量的恒等式方程,可得以α
1
,α
2
为基础解系的一个齐次线性方程组为[*] 将题设条件中的方程组(I)与上述①式中的方程组联立,得 [*] 参数a,b的值只要使得方程组②有非零解,并
解析
本题考查求两个齐次线性方程组的非零公共解,其一般方法有联立法和代入法.下面以联立法解之,所以要先把方程组(Ⅱ)由其基础解系“还原”出来.
注:由方程组(Ⅱ)的基础解系“还原”方程组时,其结果形式不唯一.请读者思考,若以x
2
,x
4
或x
1
,x
3
为自由变量,方程组(Ⅱ)的形式如何?
转载请注明原文地址:https://kaotiyun.com/show/oCw4777K
0
考研数学一
相关试题推荐
设A为n阶矩阵,且Ak=0,求(E-A)-1.
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关。证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示。
在t=0时,两只桶内各装10L的盐水,盐的浓度为15g/L,用管子以2L/min的速度将净水输入到第一只桶内,搅拌均匀后的混合液又由管子以2L/min的速度被输送到第二只桶内,再将混合液搅拌均匀,然后用1L/min的速度输出,求在任意时刻t>0,从第二只桶
设α1,α2,α3,…,αn为n个n维线性无关的向量,A是n阶矩阵,证明:Aα1,Aα2,Aα3,…,Aαn线性无关的充分必要条件是A可逆。
设二阶常系数微分方程y’’+ay’+βy=ye2x有一个特解为y=e2x+(1+x)ex,试确定a、β、γ和此方程的通解.
二阶微分方程y’’=e2y,满足条件y(0)=0,y’(0)=1的特解是y=________.
设函数f(x)在(-∞,+∞)内单调有界,{xn}为数列,下列命题正确的是().
设{un}为正项单调递增数列,证明收敛的充要条件是收敛.
3个电子元件并联成一个系统,只有当3个元件损坏2个或2个以上时,系统便报废.已知电子元件的寿命服从参数为1/1000的指数分布,求系统的寿命超过1000h的概率.
设α1,α2,…,αs是一组n维向量,则下列结论中,正确的是().
随机试题
背景背景资料:某工程建筑面积24700m2,地下1层,地上15层,现浇钢筋混凝土框架结构,建设单位通过公开招标,有甲、乙、丙三家单位参与了工程投标,经过公开开标评标,最终确定甲施工单位中标,建设单位与甲施工单位按照《建设工程施工合同(示范文本)》GF—2
设则点x=0是g(f(x))的
暗示根据受动条件,可以分为()
AprovenmethodofeffectivetextbookreadingistheSQ3RmethoddevelopedbyFrancisRobinson.Thefirststepistosurvey(the
支配面部表情肌的神经是
固定资产的使用周期较长,在此期间经济环境、市场需求和技术条件等都会发生很大的变化,从而对固定资产的价格发生影响。()
下列陈述中,错误的一项是()。
以下各技术指标,属于超买超卖型的是( )。
在三级模式之间引入两层映像,其主要功能之一是()。
A、Agreatcharacterinhistory.B、Atheatricalroleinaplay.C、AspecialsymbolinNovell.D、Animaginarypersoninafiction.
最新回复
(
0
)