首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组(Ⅰ)为又已知齐次线性方程组(Ⅱ)的基础解系为α1=(0,1,1,0)T,α2=(-1,2,2,1)T.试问a,b为何值时,(Ⅰ)与(Ⅱ)有非零公共解?并求出所有的非零公共解.
设齐次线性方程组(Ⅰ)为又已知齐次线性方程组(Ⅱ)的基础解系为α1=(0,1,1,0)T,α2=(-1,2,2,1)T.试问a,b为何值时,(Ⅰ)与(Ⅱ)有非零公共解?并求出所有的非零公共解.
admin
2016-01-23
61
问题
设齐次线性方程组(Ⅰ)为
又已知齐次线性方程组(Ⅱ)的基础解系为α
1
=(0,1,1,0)
T
,α
2
=(-1,2,2,1)
T
.试问a,b为何值时,(Ⅰ)与(Ⅱ)有非零公共解?并求出所有的非零公共解.
选项
答案
由齐次线性方程组(Ⅱ)的基础解系可得 (α
1
,α
2
)=[*] 以x
3
,x
4
为自由变量,则上述基础解系可由以下等价方程组得到 [*] 去掉x
3
,x
4
两个自由变量的恒等式方程,可得以α
1
,α
2
为基础解系的一个齐次线性方程组为[*] 将题设条件中的方程组(I)与上述①式中的方程组联立,得 [*] 参数a,b的值只要使得方程组②有非零解,并
解析
本题考查求两个齐次线性方程组的非零公共解,其一般方法有联立法和代入法.下面以联立法解之,所以要先把方程组(Ⅱ)由其基础解系“还原”出来.
注:由方程组(Ⅱ)的基础解系“还原”方程组时,其结果形式不唯一.请读者思考,若以x
2
,x
4
或x
1
,x
3
为自由变量,方程组(Ⅱ)的形式如何?
转载请注明原文地址:https://kaotiyun.com/show/oCw4777K
0
考研数学一
相关试题推荐
若A~B,证明:存在可逆矩阵P,使得AP~BP.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.判断矩阵A可否对角化。
设A为m阶正定矩阵,B为m×n阶实矩阵,证明:BTAB正定的充分必要条件是r(B)=n.
设A是n(n≥3)阶矩阵,证明:(A*)*=|A|n-2A.
设u=f(x,y,xyz),函数z=z(x,y),由exyz=∫xyzh(xy+z-t)dt确定,其中f连续可偏导,h连续,求.
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数。将x=x(y)所满足的微分方程变换为y=y(x)所满足的微分方程。
下列命题正确的是()。
已知曲线L的极坐标方程为r=1+cosθ(0≤θ≤π/2)求曲线L与切线T及两个坐标轴所围图形的面积
如果函数f(x,y)在(0,0)处连续,那么下列命题正确的是
由结论可知,若令φ(x)=xf(x),则φˊ(x)=f(x)+xfˊ(x).因此,只需证明φ(x)在[0,1]内某一区间上满足罗尔定理的条件.令φ(x)=xf(x),由积分中值定理可知,存在η∈(0,1/2)使[*]
随机试题
《我的世界观》的主要风格特点有
被动锻炼方式包括()。
A.柴胡疏肝散B.犀角地黄汤C.逍遥散合桃红四物汤D.茵陈术附汤E.茵陈蒿汤合膈下逐瘀汤原发性肝癌之热毒伤阴证治宜
比例税率是对同一计税依据,不论数额大小,只规定统一的法定比例的税率。在我国,( )等采用的是比例税率。
证券营业部的业务差错,按业务性质可分为()。
根据对被投资企业的影响,长期股权投资分为()。
马克思曾说:社会不是以法律为基础,那是法学家的幻想。相反,法律应该以社会为基础。法律应该是社会共同的,由一定的物质生产方式所产生的利益需要的表现,而不是单个人的恣意横行。根据这段话所表达的马克思主义法学原理,下列哪一选项是正确的?()
ADO对象模型主要有Connection、Command、______、Field和Error5个对象。
Speaker1Speaker3
TheTibetAutonomousRegionis1.22millionsq.km.inarea,withanaverage______ofover4,000mabovesealevel.
最新回复
(
0
)