首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在x=a处n(n≥2)阶可导,且当x→a时f(x)是x→a的n阶无穷小,求证:f(x)的导函数f’(x)当x→a时是x→a的n-1阶无穷小.
设f(x)在x=a处n(n≥2)阶可导,且当x→a时f(x)是x→a的n阶无穷小,求证:f(x)的导函数f’(x)当x→a时是x→a的n-1阶无穷小.
admin
2018-06-15
53
问题
设f(x)在x=a处n(n≥2)阶可导,且当x→a时f(x)是x→a的n阶无穷小,求证:f(x)的导函数f’(x)当x→a时是x→a的n-1阶无穷小.
选项
答案
f(x)在x=a可展开成 f(x)=f(a)+f’(a)(x-a)+[*]f"(a)(x-a)
2
+… +[*]f
(n)
(a)(x-a)
n
+o((x-a)
n
)(x→a). 由x→a时f(x)是(x-a)的/1,阶无穷小[*] f(a)=f’(a)=…=f
(n-1)
(a)=0,f
(n)
(a)≠0. 又f(x)在x=a邻域n1阶可导,f
(n-1)
(x)在x=a可导. 证明由g(x)=f’(x)在x=a处n-1阶可导[*] g(x)=g(a)+g’(a)(x-a)+…+[*]g
(n-1)
(a)(x-a)
n-1
+o((x-a)
n-1
), 即f’(x)=f’(a)+f"(a)(x-a)+…+[*]f
(n)
(a)(x-a)
n-1
+o((x-a)
n-1
) =[*]f
(n)
(a)(x-a)
n-1
+o((x-a)
n-1
). 因此f’(x)是x-a的n-1阶无穷小(x→a).
解析
转载请注明原文地址:https://kaotiyun.com/show/oDg4777K
0
考研数学一
相关试题推荐
微分方程y’’+2y’+2y=e-xsinx的特解形式为()
已知A,B为3阶相似矩阵,λ1=1,λ2=2为A的两个特征值,|B|=2,则行列式=______
微分方程y’’-2y’=x2+e2x+1的待定系数法确定的特解形式(不必求出系数)是_____
设p(x)在[a,b]上非负连续,f(x)与g(x)在[a,6]上连续且有相同的单调性,其中D={(x,y)|a≤x≤b,a≤y≤b),比较I1=∫∫Dp(x)f(x)p(y)g(y)dxdy与I2=∫∫Dp(x)f(y)p(y)g(y)dxdy的大小,并
设f(x)在区间[1,+∞)上单调减少且非负的连续函数,f(x)fx(n=1,2,…).证明:反常积分同敛散.
设f(x,y)是{(x,y)|x2+y2≤1)上的二阶连续可微函数,满足,计算积分
级数的和为_______
设半径为R的球面∑的球心在定球面x2+y2+z2=a2(a>0)上,问当R取何值时,球面∑在定球面内部的哪部分面积最大?
设f(x)=nx(1-x)n(n为自然数),求证:f(x)<1/e.
已知n阶矩阵A的每行元素之和为a,求A的一个特征值.当k是自然数时,求Ak的每行元素之和.
随机试题
下列关于著作权资产评估的说法中,错误的是()。
数据库系统中除了可用层次模型和关系模型表示实体类型及实体间联系的数据模型以外,还有()。
A、15%B、20%C、40%D、60%正常人体细胞外液约占体重的
下列小儿用药注意事项中不正确的是
A.生后4~6dB.生后3个月C.生后4~6岁D.7岁E.8岁小儿白细胞数目接近成人水平的年龄()。
建筑工地上用以拌制混合砂浆的石灰膏必须经过一定时间的陈化,这是为了消除以下哪项的不利影响:
甲容器中有纯酒精11升,乙容器中有水15升,第一次将甲容器中的一部分纯酒精倒入乙容器,使酒精和水混合;第二次将乙容器中的一部分混合液倒入甲容器,这样甲容器中纯酒精含量为62.5%,乙容器中纯酒精含量为25%。那么第二次从乙容器倒入甲容器的混合液是多少升?
与有线网络相比较,卫星通信的一个主要的缺点是——。
EnthusiasmforPetsPetsarean【T1】__________partofmanyBritishfamilies.Catsanddogsarethemost【T2】__________pets
A、Inanoffice.B、Inarestaurant.C、Atarailwaystation.D、Attheinformationdesk.B
最新回复
(
0
)