首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设αi=(αi1,αi2,…,αin)T(i=1,2,…,r,r<n)是n维实向量,且α1,α2,…,αr线性无关,已知β=(b1,b2,…,b3)T是线性方程组 的非零解向量,试判断向量组α1,α2,…,αr,β的线性相关性.即β
设αi=(αi1,αi2,…,αin)T(i=1,2,…,r,r<n)是n维实向量,且α1,α2,…,αr线性无关,已知β=(b1,b2,…,b3)T是线性方程组 的非零解向量,试判断向量组α1,α2,…,αr,β的线性相关性.即β
admin
2019-12-26
48
问题
设α
i
=(α
i1
,α
i2
,…,α
in
)
T
(i=1,2,…,r,r<n)是n维实向量,且α
1
,α
2
,…,α
r
线性无关,已知β=(b
1
,b
2
,…,b
3
)
T
是线性方程组
的非零解向量,试判断向量组α
1
,α
2
,…,α
r
,β的线性相关性.即β
T
α
i
=0(i=1,2,…,r).
选项
答案
设有一组数x
1
,
2
,…,x
r+1
,使得 x
1
α
1
+x
2
α
2
+…+x
r
α
r
+x
r+1
β=0, (*) 用β
T
左乘(*)式两端,由于β是方程组的非零解,所以β
T
α
i
=0(i=1,2,…,r),从而得x
r+1
β
T
β=0,而β≠0,故β
T
β≠0,从而x
r+1
=0,代入(*)式并注意到向量组α
1
,α
2
,…,α
r
线性无关,可得x
1
=0,x
2
=0,…,x
r
=0,所以向量组α
1
,α
2
,…,α
r
,β线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/oGD4777K
0
考研数学三
相关试题推荐
设3阶矩阵A有3个特征向量η1=(1,1,1)T,η2=(1,2,4)T,η2=(1,3,9)T,它们的特征值依次为1,2,3.又设α=(1,1,3)T,求Anα.
设3阶矩阵A有3个特征向量η1=(1,2,2)T,η2=(2,一2,1)T,η3=(一2,一1,2)T,它们的特征值依次为1,2,3,求A.
已知α=是可逆矩阵A=的伴随矩阵A*的特征向量,特征值λ.求a,b.λ.
已知(2,1,1,1)T,(2,1,a,a)T,(3,2,1,a)T,(4,3,2,1)T线性相关,并且a≠1,求a.
已知β可用α1,α2,…,αs线性表示,但不可用α1,α2,…,αs-1线性表示.证明(1)αs不可用α1,α2,…,αs-1线性表示;(2)αs可用α1,α2,…,αs-1,β线性表示.
(1)如果矩阵A用初等列变换化为B,则A的列向量组和B的列向量组等价.(2)如果矩阵A用初等行变换化为B,则A的行向量组和B的行向量组等价.
设AB=C,证明:(1)如果B是可逆矩阵,则A的列向量和C的列向量组等价.(2)如果A是可逆矩阵,则B的行向量组和C的行向量组等价.
随机试题
Successinthelabdoesn’talwaysmeanimmediatesuccessonalarge________.
A.干烤消毒法B.压力蒸汽灭菌法C.紫外线消毒法D.煮沸法E.过滤除菌法空气可用的消毒方法是
发热后第2天出疹的是
某市疾病控制中心,欲找出对患者的生命威胁最大的疾病,以便制定防治对策,需要计算和评价的统计指标为
A、降逆止呕B、润肠通便C、利水消肿D、燥湿化痰E、制酸止痛瓦楞子除能消痰软坚外,又能
工程咨询的投资项目包括(),不同类型项目的咨询评价方法是不同的。
玻璃钢门窗的生产方式有()。
某机械公司经销一种小型机械的销售单价为1500元/台,单位商品的变动成本为1250元/台,固定成本分摊为6万元。公司要求该种小型机械在计划期内实现目标盈利额为4万元。求计划期的该小型机械内保利销售量为多少台()。
[音]奏鸣曲
TheMoralityTestA)FromcancertoAlzheimer’s(早老性痴呆病)todiabetes,advancesingeneticsciencemeanthatmanyofusares
最新回复
(
0
)