首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设αi=(αi1,αi2,…,αin)T(i=1,2,…,r,r<n)是n维实向量,且α1,α2,…,αr线性无关,已知β=(b1,b2,…,b3)T是线性方程组 的非零解向量,试判断向量组α1,α2,…,αr,β的线性相关性.即β
设αi=(αi1,αi2,…,αin)T(i=1,2,…,r,r<n)是n维实向量,且α1,α2,…,αr线性无关,已知β=(b1,b2,…,b3)T是线性方程组 的非零解向量,试判断向量组α1,α2,…,αr,β的线性相关性.即β
admin
2019-12-26
71
问题
设α
i
=(α
i1
,α
i2
,…,α
in
)
T
(i=1,2,…,r,r<n)是n维实向量,且α
1
,α
2
,…,α
r
线性无关,已知β=(b
1
,b
2
,…,b
3
)
T
是线性方程组
的非零解向量,试判断向量组α
1
,α
2
,…,α
r
,β的线性相关性.即β
T
α
i
=0(i=1,2,…,r).
选项
答案
设有一组数x
1
,
2
,…,x
r+1
,使得 x
1
α
1
+x
2
α
2
+…+x
r
α
r
+x
r+1
β=0, (*) 用β
T
左乘(*)式两端,由于β是方程组的非零解,所以β
T
α
i
=0(i=1,2,…,r),从而得x
r+1
β
T
β=0,而β≠0,故β
T
β≠0,从而x
r+1
=0,代入(*)式并注意到向量组α
1
,α
2
,…,α
r
线性无关,可得x
1
=0,x
2
=0,…,x
r
=0,所以向量组α
1
,α
2
,…,α
r
,β线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/oGD4777K
0
考研数学三
相关试题推荐
设3阶矩阵A的各行元素之和都为2,又α1=(1,2,2)T和α2=(0,2,1)T分别是(A—E)X=0的(A+E)X=0的解.(1)求A的特征值与特征向量.(2)求矩阵A.
设3阶矩阵A有3个特征向量η1=(1,2,2)T,η2=(2,一2,1)T,η3=(一2,一1,2)T,它们的特征值依次为1,2,3,求A.
已知α=是可逆矩阵A=的伴随矩阵A*的特征向量,特征值λ.求a,b.λ.
已知α=(1,1,一1)T是A=的特征向量,求a,b和α的特征值λ.
已知(2,1,1,1)T,(2,1,a,a)T,(3,2,1,a)T,(4,3,2,1)T线性相关,并且a≠1,求a.
已知β可用α1,α2,…,αs线性表示,但不可用α1,α2,…,αs-1线性表示.证明(1)αs不可用α1,α2,…,αs-1线性表示;(2)αs可用α1,α2,…,αs-1,β线性表示.
α1,α2,…,αr线性无关().
随机试题
城镇土地使用税
A被动体位B强迫坐位C强迫患侧卧位D强迫仰卧位E辗转体位泌尿系结石病人
A、了解病情的轻重和病情的进退B、了解津液的变化C、了解正邪斗争消长的情况D、了解胃气的有尤E、了解病位的深浅从舌苔的润燥可
根据程序公正的基本要求,法官应该禁止下列哪些行为?()
《公司法》第一百八十三条规定:“公司经营管理发生严重困难,继续存续会使股东利益受到重大损失,通过其他途径不能解决的,持有公司全部股东表决权()以上的股东,可以请求人民法院解散公司”。
下面是某金属公司的一组经营数据资料。(1)为核算甲种物资的计划期初库存量,在编制计划时盘点该种物质库存量150件,平均一日需要量10件,预计期发出量比收入量多30件。(2)乙种物资每月采购总量1200件,单价30元/件,年储存费率是12%,一次订购费用
对黑猩猩做“顿悟实验”的是()
()对知觉和产生消极情感有重要作用,在厌恶学习中也很重要
下面关于数据库数据模型的说法中,哪一个是错误的?()
YouwillheartheChiefExecutiveofBestValue,anAmericanchainofconveniencestores,talkingaboutachangeinthecompany’
最新回复
(
0
)