首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,a)T,β=(1,b,3,2)T, ①a取什么值时α1,α2,α3,α4线性相关?此时求α1,α2,α3,α4的一个极大线性无关组,并且把其
α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,a)T,β=(1,b,3,2)T, ①a取什么值时α1,α2,α3,α4线性相关?此时求α1,α2,α3,α4的一个极大线性无关组,并且把其
admin
2020-07-02
45
问题
α
1
=(1,0,0,1)
T
,α
2
=(1,1,0,0)
T
,α
3
=(0,2,一1,一3)
T
,α
4
=(0,0,3,a)
T
,β=(1,b,3,2)
T
,
①a取什么值时α
1
,α
2
,α
3
,α
4
线性相关?此时求α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,并且把其余向量用该极大线性无关组线性表出.
②在α
1
,α
2
,α
3
,α
4
线性相关的情况下,b取什么值时β可用α
1
,α
2
,α
3
,α
4
线性表示?写出一个表示式.
选项
答案
两个小题都关系到秩,α
1
,α
2
,α
3
,α
4
线性相关[*]r(α
1
,α
2
,α
3
,α
4
)<4;β可用α
1
,α
2
,α
3
,α
4
线性表示[*](α
1
,α
2
,α
3
,α
4
,β)=r(α
1
,α
2
,α
3
,α
4
).因此应该从计算这两个秩着手. 以α
1
,α
2
,α
3
,α
4
,β为列向量构造矩阵(α
1
,α
2
,α
3
,α
4
,β),然后用初等行变换把它化为阶梯形矩阵: [*] ①r(α
1
,α
2
,α
3
,α
4
)<4[*]a=3.α
1
,α
2
,α
3
是α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,并且α
4
=一6α
1
+6α
2
—3α
3
. ②r(α
1
,α
2
,α
3
,α
4
,β)=r(α
1
,α
2
,α
3
,α
4
)=3,则b-2.β=一7α
1
+8α
2
—3α
3
.
解析
转载请注明原文地址:https://kaotiyun.com/show/oUx4777K
0
考研数学三
相关试题推荐
设随机变量X1,X2,…,Xn相互独立,且都服从数学期望为1的指数分布,求Z=min{X1,X2,…,Xn}的数学期望和方差.
设B是3阶实对称矩阵,特征值为1,1,一2,并且α=(1,一1,1)T是B的特征向量,特征值为一2.求B.
求函数在区间[e,e2]上的最大值.
已知α1,α2,α3线性无关α1+tα2,α2+2tα3,α3+4tα1线性相关.则实数t等于__________.
设A为n阶非零矩阵,且A2=A,r(A)=r.求|SE+A|.
设X为一个总体且E(X)=k,D(X)=1,X1,X2,…,Xn为来自总体的简单随机样本,令,问n多大时才能使
设其中ai≠aj(i≠j,i,j=1,2,…,n).则线性方程组ATX=B的解是_______.
正项级数收敛的充分必要条件为其部分和数列{Sn}_________.
设A,B为随机事件,则P(A)=P(B)充分必要条件是()
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。(Ⅰ)计算PTDP,其中P=;(Ⅱ)利用(Ⅰ)的结果判断矩阵B—CTA-1C是否为正定矩阵,并证明你的结论。
随机试题
在Windows7的____________对话框中,可以设置是否显示属性为“隐藏”的文件和文件夹,
红舌和绛舌皆主
最易导致阻塞性肺气肿的疾病是
A.现况研究B.病例对照研究C.队列研究D.流行病学实验研究E.分析性研究由研究者控制干预措施的研究为
道路货运企业等级由各级()组织专家委员会评定。[2007年真题]
甲公司是国有独资公司,根据企业国有资产法律制度的规定,下列选项中,不属于甲公司关联方的是()。
下列可以反映气候垂直变化的诗句是()。
下列可以构成诈骗罪的是:
SQL-INSERT命令的功能是
A、Airtrafficconditions.B、Trafficjamsonhighways.C、Roadconditions.D、Newtrafficrules.A题目询问未来的新闻报道在谈到交通时,将集中于哪个方面。关键是要听到
最新回复
(
0
)