首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为10y12-4y22-4y32,Q的第1列为 (1)求A. (2)求一个满足要求的正交矩阵Q.
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为10y12-4y22-4y32,Q的第1列为 (1)求A. (2)求一个满足要求的正交矩阵Q.
admin
2018-06-27
74
问题
二次型f(x
1
,x
2
,x
3
)=X
T
AX在正交变换X=QY下化为10y
1
2
-4y
2
2
-4y
3
2
,Q的第1列为
(1)求A.
(2)求一个满足要求的正交矩阵Q.
选项
答案
标准二次型10y
1
2
-4y
2
2
-4y
3
2
的矩阵为 [*] 则Q
-1
AQ=Q
T
AQ=B,A和B相似.于是A的特征值是10,-4,-4. (1)Q的第1列α
1
=[*]是A的属于10的特征向量,其[*]倍η
1
=(1,2,3)
T
也是属于10的特征向量.于是A的属于-4的特征向量和(1,2,3)
T
正交,因此就是方程 x
1
+2x
2
+3x
3
=0 的非零解.求出此方程的一个正交基础解系η
2
=(2,-1,0)
T
,η
3
=[*] 建立矩阵方程A(η
1
,η
2
,η
3
)=(10η
1
,-4η
2
,-4η
3
),用初等变换法解得 [*] (2)将η
2
,η
3
单位化得α
2
=[*](2,-1,0)
T
,α
3
=[*](3,6,-5)
T
. 则正交矩阵Q=(α
1
,α
2
,α
3
)满足要求.
解析
转载请注明原文地址:https://kaotiyun.com/show/oZk4777K
0
考研数学二
相关试题推荐
设可导函数x=x(t)由方程所确定,其中可导函数f(u)>0,且f(0)=f’(0)=1,则x’’(0)=
一质量为M、长为Z的均匀杆AB吸引着一质量为m的质点C,此质点C位于杆AB的中垂线上,且与AB的距离为a.试求:杆AB与质点C的相互吸引力;
设x=Fcosθ,y=rsinθ.则直角坐标系xOy中的累次积分可化为极坐标系(r,θ)中的累次积分是____________.
n维向量组(I):α1,α2……αs和向量组(Ⅱ):β1β2……βt等价的充分必要条件是
设A是3阶非零矩阵。满足A2=A,且A≠E,则必有()
设f(x)在(一∞,+∞)上存在二阶导数,f’(0)0.证明:若f(x)恰有两个零点,则此两零点必反号.
设非负函数f(x)当x≥0时连续可微,且f(0)=1.由y=f(x),x轴,y轴及过点(x,0)且垂直于x轴的直线围成的图形的面积与y=f(x)在[0,x]上弧的长度相等,求f(x).
已知f(x1,x2,x3)=5x12+5x22+cx32-2x1x2+6x1x3—6x2x3的秩为2.试确定参数c及二次型对应矩阵的特征值,并问f(x1,x2,x3)=1表示何种曲面.
设0<k<1,f(x)=kx—arctanx.证明:f(x)在(0,+∞)中有唯一的零点,即存在唯一的x0∈(0,+∞),使f(x0)=0.
随机试题
患者,女,34岁。风湿热病史5年,近3月出现胸闷气促,呼吸困难,咳嗽,劳累后加重。如听诊时在心尖区闻及舒张中晚期隆隆样杂音,则诊断可能是
行政组织平行分部化的基本方式是()
在集装箱运输单证中,由承运人或其授权的关系人签发的货物联运凭证,是货物所有权的支配文件,是承运人与托运人之间运输契约成立的证明,这种单证是( )。
善于养血敛阴,柔肝止痛,平抑肝阳的药物是()
依据有关法律规定,下列哪些机关所在地周边距离10米至300米内,不得举行集会、游行、示威?
背景资料:某实施监理的工程项目,采用以直接费为计算基础的全费用单价计价,混凝土分项工程全费用单价为446元/m3,直接费为350元/m3,间接费费率为12%,利润率为10%,营业税税率为3%,城市维护建设税率为7%,教育费附加费率为3%。施工合同约定:合
固定资产的更新改造等后续支出,满足固定资产确认条件的,应当计入固定资产成本,如有被替换的部分,应同时将被替换部分的账面价值从该固定资产原账面价值中扣除;不满足固定资产确认条件的固定资产修理费用等,应当在发生时计入当期损益。()
边际消费倾向和平均消费倾向总是大于0而小于1的。()
()是人民警察的象征与标志。
Youmaysaythatthebusinessofmarkingbooksisgoingtoslowdownyourreading.【C1】______probablywill.That’soneofthe【C2】
最新回复
(
0
)