首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为10y12-4y22-4y32,Q的第1列为 (1)求A. (2)求一个满足要求的正交矩阵Q.
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为10y12-4y22-4y32,Q的第1列为 (1)求A. (2)求一个满足要求的正交矩阵Q.
admin
2018-06-27
57
问题
二次型f(x
1
,x
2
,x
3
)=X
T
AX在正交变换X=QY下化为10y
1
2
-4y
2
2
-4y
3
2
,Q的第1列为
(1)求A.
(2)求一个满足要求的正交矩阵Q.
选项
答案
标准二次型10y
1
2
-4y
2
2
-4y
3
2
的矩阵为 [*] 则Q
-1
AQ=Q
T
AQ=B,A和B相似.于是A的特征值是10,-4,-4. (1)Q的第1列α
1
=[*]是A的属于10的特征向量,其[*]倍η
1
=(1,2,3)
T
也是属于10的特征向量.于是A的属于-4的特征向量和(1,2,3)
T
正交,因此就是方程 x
1
+2x
2
+3x
3
=0 的非零解.求出此方程的一个正交基础解系η
2
=(2,-1,0)
T
,η
3
=[*] 建立矩阵方程A(η
1
,η
2
,η
3
)=(10η
1
,-4η
2
,-4η
3
),用初等变换法解得 [*] (2)将η
2
,η
3
单位化得α
2
=[*](2,-1,0)
T
,α
3
=[*](3,6,-5)
T
. 则正交矩阵Q=(α
1
,α
2
,α
3
)满足要求.
解析
转载请注明原文地址:https://kaotiyun.com/show/oZk4777K
0
考研数学二
相关试题推荐
设有一容器由平面z=0,z=1及介于它们之间的曲面S所围成.过z轴上点(0,0,z)(0≤z≤1)作垂直于z轴的平面与该立体相截得水平截面D(z),它是半径的圆面.若以每秒v0体积单位的均匀速度往该容器注水,并假设开始时容器是空的.求水表面上升速度最大
设函数则下列结论正确的是
已知y1*(x)=xe-x+e-2x,y2*(x)=xe-x+xe-2x,y3*(x)=xe-x+e-2x+xe-2x是某二阶线性常系数微分方程y’’+Py’+qy=f(x)的三个特解.设y=y(x)是该方程满足y(0)=0,y’(0)=0的特解,求
已知A是3阶矩阵,αi(i=1,2,3)是3维非零列向量,若Aαi=iαi(i=1,2,3),令α=α1+α2+α3证明:α,Aα,A2α线性无关;
设函数f(x),g(x)在[a,b]上连续,在(a,b)内可导,且g’(x)≠0(x∈(a,b)),求证:若在(a,b)单调增加,则在(a,b)单调增加.
一质量为M、长为Z的均匀杆AB吸引着一质量为m的质点C,此质点C位于杆AB的中垂线上,且与AB的距离为a.试求:当质点C在杆AB的中垂线上从点C沿y轴移向无穷远处时,克服引力所做的功.
(2002年试题,七)某闸门的形状与大小如图1—3—8所示,其中直线l为对称轴x闸门的上部为矩形ABCD,下部由二次抛物线与线段AB所围成.当水面与闸门的上端相平时,欲使闸门矩形部分承受的水压力与闸门下部承受的水压力之比为5:4,闸门矩形部分的高h应为多少
求曲线y=3-|x2-1|与x轴围成的封闭区域绕直线y=3旋转所得的旋转体的体积.
(2002年)设0<χ1<3,χn+1=(n=1,2,…),证明数列{χn}的极限存在,并求此极限.
随机试题
关于方差分析以下错误的一项为
法的制定的程序即立法程序,是指()。
建设工程项目施工质量保证体系的主要内容有()。
中央预算的调整方案必须提请()审查和批准。
小唐在学期末复习数学的时候,会把这个学期所学的所有数学知识点写成提纲,从而帮助自己复习。这属于学习策略中的()。
以下是对中国文化艺术的文言别称,属于美术的是()。
下列句子中没有语病的一项是()。
第十二届全国人民代表大会第三次会议政府工作报告中看点众多,精彩纷呈。为了更好地宣传大会精神,新闻编辑小王需制作一个演示文稿,素材放于考生文件夹下的“文本素材.docx”及相关图片文件,具体要求如下:第1张幻灯片为标题幻灯片,标题为“图解今年年施政要
A、Talkingonthetelephone.B、Vacuumingthebathroom.C、Rollingtherocks.D、Listeningtomusic.D语义理解题。女士说可以理解欣赏摇滚乐时需要把音量调高,可是你
IntheUnitedStatesthescienceofclimatechangestillremainsacontroversialissue.Partoftheproblemsisthatitiscompl
最新回复
(
0
)