首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵. 利用(1)的结果判断矩阵B—CTA一1C是否为正定矩阵,并证明结论.
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵. 利用(1)的结果判断矩阵B—CTA一1C是否为正定矩阵,并证明结论.
admin
2019-08-12
67
问题
设
为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.
利用(1)的结果判断矩阵B—C
T
A
一1
C是否为正定矩阵,并证明结论.
选项
答案
由(1)中结果知,矩阵D与矩阵[*]合同,又因D是正定矩阵,所以矩阵M为正定矩阵,从而可知M是对称矩阵,那么B一C
T
A
一1
C是对称矩阵.对m维向量X=(0,0,…,0)
T
和任意n维非零向量y=(y
1
,y
2
,…y
n
)
T
≠0,都有[*]依定义,Y
T
(B一C
T
A
一1
C)Y为正定二次型,所以矩阵B一C
T
A
一1
C为正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/ocN4777K
0
考研数学二
相关试题推荐
当x→0时,下列四个无穷小中哪一个是比其它几个更高阶的无穷小量
将n阶可逆方阵A的第i行与第j行对换后的矩阵记作B,(1)证明:B可逆;(2)求AB-1.
(02)已知矩阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1α1+t2α1,其中t1,t2为实常数.试问t1,t2满足什么关系时,β1,β2,…,βm也为AX=0的一个基础解系.
设矩阵A=相似.(1)求a,b的值;(2)求一个可逆矩阵P,使P-1AP=B.
设矩阵A=,|A|=-1,A的伴随矩阵A*有一个特征值为λ0,属于λ0的一个特征向量为α=(-1,-1,1)T.求a,b,c和λ0的值.
已知f(x)的一个原函数为cosx,g(x)的一个原函数为x2,下列函数哪些是复合函数f[g(x)]的原函数?(1)x1(2)cos2x(3)cos(x2)(4)cosx
求微分方程=xdy的通解,并求满足y(1)=0的特解.
设A是3阶实矩阵,λ1,λ2,λ3是A的三个不同的特征值,ξ1,ξ2,ξ3是三个对应的特征向量,证明:当λ2λ3≠0时,向量组ξ1,A(ξ1+ξ2),A2(ξ1+ξ2+ξ3)线性无关.
求微分方程的通解,并求满足y(1)=0的特解.
随机试题
江泽民系统阐述“三个代表”重要思想是在
男,30岁,2周前出现干咳,伴有午后低热、盗汗、左胸痛,近几日自觉左胸痛好转,但出现气促,夜间喜左侧卧位。查体:气管向右侧移位,左侧胸廓较右侧稍饱满,左侧呼吸运动减弱,左侧触觉语颤减弱,听诊左侧呼吸音消失,双肺未闻及干、湿性哕音。该患者的症状、体征提示
A.牙源性B.血源性C.损伤性D.腺源性E.医源性行局部麻醉、手术、穿刺等操作未严格遵守无菌技术造成的继发性感染()
竹沥的用法用量
预应力混凝土工程施工技术日趋成熟,在预应力钢筋选用时,应提倡采用强度高,性能好的()。
以下属于贷款效益性调查的内容的是()。
编制年度预算、制定公司战略与安排年度经营计划三者之间应当遵循的先后顺序的是()。
IP地址块59.67.159.125/11的子网掩码可写为()。
Wheredoestheconversationmostprobablytakeplace?
事由:秋游参加者:一年级新生活动内容:上午:参观植物园并看《人与自然》的展览下午:颐和园集合时间和地点:11月5日上午7:00;校大门口注意事项:1.自带午餐2.参加者在本周四前到学生会报名Wordsforrefere
最新回复
(
0
)