首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(05)已知3阶矩阵A的第一行是(a,b,c),a,b.c不全为零,矩阵B=(k为常数),且AB=O,求线性方程组Ax=0的通解.
(05)已知3阶矩阵A的第一行是(a,b,c),a,b.c不全为零,矩阵B=(k为常数),且AB=O,求线性方程组Ax=0的通解.
admin
2018-08-01
79
问题
(05)已知3阶矩阵A的第一行是(a,b,c),a,b.c不全为零,矩阵B=
(k为常数),且AB=O,求线性方程组Ax=0的通解.
选项
答案
由AB=O知矩阵B的每一列都是方程组Ax=0的解,因此Ax=0必有非零解,要求其通解是要求出它的基础解系即可.而基础解系所含向量个数等于3-r(A),所以需要先确定A的秩r(A). 由于AB=O,故r(A)+r(B)≤3,又由a,b,c不全为零,可知r(A)≥1. 当k≠9时,r(B)=2,于是r(A)=1; 当k=9时,r(B)=1,于是r(A)=1或r(A)=2. (1)当k≠9时,因r(A)=1,知Ax=0的基础解系含2个向量.又由AB=O可得 [*] 由于η
1
=(1,2,3)
T
,η
2
=(3,6,k)
T
线性无关,故η
1
,η
2
为Ax=0的一个基础解系,于是Ax=0的通解为 x=x
1
η
1
+x
2
η
2
,其中c
1
,c
2
为任意常数. (2)当k=9时,分别就r(A)=2和r(A)=1进行讨论. 如果r(A)=2,则Ax=0的基础解系由一个向量构成.又因为[*]=0,所以Ax=0的通解为x=c
1
(1,2,3)
T
,其中c
1
为任意常数. 如果r(A)=1,则Ax=0的基础解系由两个向量构成.又因为A的第一行为(a,b,c)且a,b,c不全为零,所以Ax=0等价于ax
1
+bx
2
+cx
3
=0.不妨设a≠0,则η
1
=(-b,a,0)
T
,η
2
=(-c,0,a)
T
是Ax=0的两个线性无关的解,故Ax=0的通解为 x=c
1
η
1
+c
2
η
2
,其中c
1
,c
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/A2j4777K
0
考研数学二
相关试题推荐
设非齐次线性方程组有三个线性无关解α1,α2,α3,(Ⅰ)证明系数矩阵的秩r(A)=2;(Ⅱ)求常数a,b及通解.
设A为m×n矩阵,且r(A)=m<n,则下列结论正确的是().
设A>0,D是由曲线段y=Asinx(0≤x≤)及直线y=0,x=所围成的平面区域,V1,V2分别表示D绕x轴与绕y轴旋转所成旋转体的体积,若V1=V2,求A的值.
用正交变换法化二次型f(x1,x2,x3)=x12+x2x2+x3x2-4x1x2-4x1x3-4x2x3为标准二次型
设A=,且AX=0的基础解系含有两个线性无关的解向量,求AX=0的通解.
证明:若矩阵A可逆,则其逆矩阵必然唯一.
求微分方程y"+2y’-3y=(2x+1)ex的通解.
用变量代换x=lnt将方程化为y关于t的方程,并求原方程的通解.
设α1,α2,…,αm与β1,β2,…,βs为两个n维向量组,且r(α1,α2,…,αm)=r(β1,β2,…,βs)=r,则().
求方程组的通解.
随机试题
阅读作品片段,回答问题:啊,我年青的女郎!我想我的前身原本是有用的栋梁,我活埋在地底多年,到今朝总得重见天光。怎样理解这一节诗的寓意?
粪便镜检大量脓细胞提示()。
乙胺丁醇抗结核作用特点是
氢气瓶的规定涂色为()。
小李打算3年后购置一套现值60万元的房子,并打算25年后退休时采用“以房养老”的方式满足退休后的生活费需求(假设届时房贷已还清)。退休时按房价的80%抵押给银行,银行每月月末支付给小李固定的现金流作为养老金。假设他退休后余寿20年,房价成长率5%,房屋年折
以下是属于商业银行客服风险监测内生变量指标的是( )。
清西陵葬着()4位皇帝及他们的后妃、王爷、公主、阿哥等76人,共有陵寝14座,是一处典型的清代古建筑群。
北魏孝文帝以汉化为主题的改革是中国文化史上的盛事。()
1.发文字号有错误,应为:国办发[2006]24号。2.转发性通知的正文首先必须交代被转发文件的发文机关及文件名称,表明发文者对转发文件的态度、要求。因此,应在正文的第一自然段补上以下内容:工商局、公安部、人民银行《关于严厉打击传销和变相传销等非法经营活
A、Coupleswhoaremarriedforlessthantwoyears.B、Coupleswhoaremarriedforlessthanfiveyears.C、Coupleswhoaremarried
最新回复
(
0
)