首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(05)已知3阶矩阵A的第一行是(a,b,c),a,b.c不全为零,矩阵B=(k为常数),且AB=O,求线性方程组Ax=0的通解.
(05)已知3阶矩阵A的第一行是(a,b,c),a,b.c不全为零,矩阵B=(k为常数),且AB=O,求线性方程组Ax=0的通解.
admin
2018-08-01
128
问题
(05)已知3阶矩阵A的第一行是(a,b,c),a,b.c不全为零,矩阵B=
(k为常数),且AB=O,求线性方程组Ax=0的通解.
选项
答案
由AB=O知矩阵B的每一列都是方程组Ax=0的解,因此Ax=0必有非零解,要求其通解是要求出它的基础解系即可.而基础解系所含向量个数等于3-r(A),所以需要先确定A的秩r(A). 由于AB=O,故r(A)+r(B)≤3,又由a,b,c不全为零,可知r(A)≥1. 当k≠9时,r(B)=2,于是r(A)=1; 当k=9时,r(B)=1,于是r(A)=1或r(A)=2. (1)当k≠9时,因r(A)=1,知Ax=0的基础解系含2个向量.又由AB=O可得 [*] 由于η
1
=(1,2,3)
T
,η
2
=(3,6,k)
T
线性无关,故η
1
,η
2
为Ax=0的一个基础解系,于是Ax=0的通解为 x=x
1
η
1
+x
2
η
2
,其中c
1
,c
2
为任意常数. (2)当k=9时,分别就r(A)=2和r(A)=1进行讨论. 如果r(A)=2,则Ax=0的基础解系由一个向量构成.又因为[*]=0,所以Ax=0的通解为x=c
1
(1,2,3)
T
,其中c
1
为任意常数. 如果r(A)=1,则Ax=0的基础解系由两个向量构成.又因为A的第一行为(a,b,c)且a,b,c不全为零,所以Ax=0等价于ax
1
+bx
2
+cx
3
=0.不妨设a≠0,则η
1
=(-b,a,0)
T
,η
2
=(-c,0,a)
T
是Ax=0的两个线性无关的解,故Ax=0的通解为 x=c
1
η
1
+c
2
η
2
,其中c
1
,c
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/A2j4777K
0
考研数学二
相关试题推荐
设x与y均大于0且x≠y,证明
设二次型f(x1,x2,x3)在正交变换x=Py下的标准形为其中P=(e1,e2,e3).若Q=(e1,一e3,e2),则f(x1,x2,x3)在正交变换x=Qy下的标准形为
用正交变换法化二次型f(x1,x2,x3)=x12+x2x2+x3x2-4x1x2-4x1x3-4x2x3为标准二次型
设A=,且AX=0的基础解系含有两个线性无关的解向量,求AX=0的通解.
求微分方程的通解.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:存在η∈(a,b),使得ηf’(η)+f(η)=0.
设A是m阶矩阵,B是n阶矩阵,且|A|=a,|B|=b,则=_______
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数.(1)将x=x(y)所满足的微分方程变换为y=y(x)所满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的解.
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r()=r
设二阶常系数非齐次线性微分方程y"+y’+qy=Q(x)有特解y=3e-4+x2+3x+2,则Q(x)=_______,该微分方程的通解为_______.
随机试题
简述组织公民行为的作用。
辟邪说,难壬人。难:
男性,70岁,以往有劳力型心绞痛,长期服用硝酸甘油,病情尚稳定,近1个月来胸痛又发作,部位于胸骨下段,且多发生在午睡时或晚间人睡后,服硝酸甘油无效,起床站立后可缓解。以往有胆石史但从无发作。为了进一步明确诊断应做下列哪项检查
骨肉瘤主要的X线表现是( )
根据《中共中央、国务院关于加快水利改革发展的决定》,下列关于我国水利面临新形势的描述,正确的有()。
与经纪业务相比,自营业务是证券公司()。
国际直接投资的基本形式包括()。
某企业2005年2月开业,领受房产权证、工商营业执照、商标注册证、土地使用证、特种行业经营许可证、税务登记证各一件;订立设备购买合同,所载金额为140万元,但并未实际履行;订立借款合同一份,所载金额为40万元,另订立财产抵押合同一份,拟将一辆小汽车作为上述
Whyisaskingcandidatestoimaginetheirreactionstoasituationunhelpful?WhatdoesJanGodleysayaboutthemanagersinhe
Itmayseemoddbuticeitselfsometimes(11)!Somegrowersactuallyspraytheircropswithwateronafreezingnight.Water
最新回复
(
0
)