首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(05)已知3阶矩阵A的第一行是(a,b,c),a,b.c不全为零,矩阵B=(k为常数),且AB=O,求线性方程组Ax=0的通解.
(05)已知3阶矩阵A的第一行是(a,b,c),a,b.c不全为零,矩阵B=(k为常数),且AB=O,求线性方程组Ax=0的通解.
admin
2018-08-01
95
问题
(05)已知3阶矩阵A的第一行是(a,b,c),a,b.c不全为零,矩阵B=
(k为常数),且AB=O,求线性方程组Ax=0的通解.
选项
答案
由AB=O知矩阵B的每一列都是方程组Ax=0的解,因此Ax=0必有非零解,要求其通解是要求出它的基础解系即可.而基础解系所含向量个数等于3-r(A),所以需要先确定A的秩r(A). 由于AB=O,故r(A)+r(B)≤3,又由a,b,c不全为零,可知r(A)≥1. 当k≠9时,r(B)=2,于是r(A)=1; 当k=9时,r(B)=1,于是r(A)=1或r(A)=2. (1)当k≠9时,因r(A)=1,知Ax=0的基础解系含2个向量.又由AB=O可得 [*] 由于η
1
=(1,2,3)
T
,η
2
=(3,6,k)
T
线性无关,故η
1
,η
2
为Ax=0的一个基础解系,于是Ax=0的通解为 x=x
1
η
1
+x
2
η
2
,其中c
1
,c
2
为任意常数. (2)当k=9时,分别就r(A)=2和r(A)=1进行讨论. 如果r(A)=2,则Ax=0的基础解系由一个向量构成.又因为[*]=0,所以Ax=0的通解为x=c
1
(1,2,3)
T
,其中c
1
为任意常数. 如果r(A)=1,则Ax=0的基础解系由两个向量构成.又因为A的第一行为(a,b,c)且a,b,c不全为零,所以Ax=0等价于ax
1
+bx
2
+cx
3
=0.不妨设a≠0,则η
1
=(-b,a,0)
T
,η
2
=(-c,0,a)
T
是Ax=0的两个线性无关的解,故Ax=0的通解为 x=c
1
η
1
+c
2
η
2
,其中c
1
,c
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/A2j4777K
0
考研数学二
相关试题推荐
设A=,且AX=0的基础解系含有两个线性无关的解向量,求AX=0的通解.
设A为三阶矩阵,A的特征值为λ1=1,λ2=2,λ3=3,其对应的线性无关的特征向量分别为,求Anβ.
证明:若矩阵A可逆,则其逆矩阵必然唯一.
设n阶矩阵A满足(aE-A)(bE-A)=O且a≠b.证明:A可对角化.
设f(x)是二阶常系数非齐次线性微分方程y"+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,().
设曲线y=,过原点作切线,求此曲线、切线及x轴所围成的平面图形绕x轴旋转一周所成的旋转体的表面积.
设A,B为n阶正定矩阵.证明:A+B为正定矩阵.
[*]则(Ⅱ)可写为BY=0,因为β1,β2,…,βn为(Ⅰ)的基础解系,因此r(A)=n,β1,β2,…,βn线性无关,Aβ1=Aβ2=…=Aβn=0[*]A(β1,β2,…,βn)=[*]BAT=O[*]α1T,α2T,…,αnT为BY=0的一组解,
证明方程x+p+qcosx=0有且仅有一个实根,其中p,q为常数,且0
随机试题
企业建造办公大楼领用生产用原材料时,相关的增值税应借记的会计科目是()。
环磷酰胺细胞类可引起明显的骨髓抑制,应定期复查血象,当白细胞降到下列水平时,应停药
初戴全口义齿时,发现下总义齿左右撬动,加力时患者有痛感。在下述造成义齿撬动的原因中,首先考虑的原因应是
湿热熏蒸的面色是
该施工企业安全管理机构的第一责任人是()。根据施工安全技术措施计划的实施要求,下列各项中不属于安全技术交底主要内容的有()。
女职工生育享受不少于()天的产假。
根据《民事诉讼法》的规定,人民法院有权裁定终结执行的情形包括()。
RS449标准规格包括两个关于电气特性的子集标准,其中RS422是(5)。
Whyisitsodifficulttofallasleepwhenyouareovertired?Thereisnooneanswerthat【C1】______toeveryindividual.Butmany
IdentityTheftA)Identitytheftandidentityfraudaretermsusedtorefertoalltypesofcrimeinwhichsomeonewrongfullyobt
最新回复
(
0
)