首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶正定矩阵,α1,α2,…,αn是n维非零列向量,且αiTAαj=0(i≠j),证明α1,α2,…,αm线性无关.
设A是n阶正定矩阵,α1,α2,…,αn是n维非零列向量,且αiTAαj=0(i≠j),证明α1,α2,…,αm线性无关.
admin
2016-10-20
39
问题
设A是n阶正定矩阵,α
1
,α
2
,…,α
n
是n维非零列向量,且α
i
T
Aα
j
=0(i≠j),证明α
1
,α
2
,…,α
m
线性无关.
选项
答案
如k
1
α
1
+k
2
α
2
+…+k
m
α
2
=0,两边左乘α
1
T
A,有 k
1
α
1
T
Aα
1
+k
2
α
1
T
Aα
2
+…+k
m
α
1
T
Aα
m
=0. 由于A正定,α
1
T
Aα
1
>0及α
1
T
Aα
j
=0(j≠1),得k
1
=0.类似可证k
2
=k
3
=…=k
m
=0,即α
1
,α
2
,…,α
m
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/oeT4777K
0
考研数学三
相关试题推荐
[*]
一男子到闹市区去,他遇到背后袭击并被抢劫,他断言凶手是个白人,然而当调查这一案件的法院在可比较的光照条件下多次重复展现现场情况时,受害者正确识别袭击者种族的次数约占80%,袭击者确实是白人的概率是0.8吗?试给出说明.
利用概率测度的性质证明:在投掷两枚硬币的试验中,第一枚是均匀的当且仅当P({(H,H),(H,T)})=1/2;第二枚硬币是均匀的当且仅当P({(H,H),(T,H)})=1/2,其中H表示硬币出现的是正面,T表示硬币出现的是反面.
设α1,α2,…,αm为一个向量组,且α1≠θ,每一个向量αi(i>1)都不能由α1,α2,…,αi-1线性表示,求证:α1,α2,…,αm线性无关.
求由下列方程所确定的隐函数y=y(x)的导数dy/dx:(1)y=1-xey;(2)xy=ex+y;(3)xy=yx;(4)y=1+xsiny.
已知二次型f(x1,x2,x3)=3x12+cx22+x32-2x1x2+2x1x3-2x2x3的秩为2,则c的值为().
若4阶矩阵A与B相似,矩阵A的特征值为1/2,1/3,1/4,1/5,则行列式|B-1-E|=_________.
试确定常数A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3),其中o(x3)是当x→0时比x3高阶的无穷小.
某公司可通过电台及报纸两种方式做销售某种商品的广告,根据统计资料,销售收入R(万元)与电台广告费用x1(万元)及报纸广告费用x2(万元)之间的关系有如下经验公式:R=15+14x1+32x2-8x1x2-2x12-10x22,在广告费用不限的情况下,求最优
设X1,X2,…,Xm为来自二项分布总体B(n,p)的简单随机样本,X和S2分别为样本均值和样本方差.记统计量T=X-S2,则ET=___________.
随机试题
恶性贫血治疗首选
Lookatyoursmartphone.Thinkaboutthedecisionsyouwillmakeonittoday.Youmaysnatchadinner【C1】________,tellyourspo
吸痰时若痰液黏稠应给予()。
四逆汤中配伍炙甘草的用意是
手术治疗仔猪脐疝,常采用的麻醉方法是()
金属切削机床是用切削方法将毛坯加工成机器零件的装备。金属切削机床的危险部位或危险部件有()
某民营上市企业的资产负债率高达80%,因面临市场占有率持续下降、融资困难等经营问题,2019年该企业主动引入战略投资者并出让35%的股权。该企业此举的目的是()。①通过股权让渡,逐步退出市场②引入外部股东,激发企业活力③调整资本结构,
女性,28岁。车祸外伤后1小时,右上腹痛,呕吐,血压80/30mmHg,心率130次/分,腹肌略紧张,全腹反跳痛,移动性浊音阳性,腹穿抽出不凝血,下列处理措施不正确的是
(1)将考生文件夹下TEED文件夹中的文件WIFH.IDX更名为DOIT.FPT。(2)将考生文件夹下PAND文件夹中的文件WEST.BMP设置为存档和隐藏属性。(3)将考生文件夹下GRAMS文件夹中的文件夹LBOE删除。(4)将考生文件夹下FISH
WashingtonIrvingwasAmerica’sfirstmanofletterstobeknowninternationally.Hisworkswerereceivedenthusiasticallyboth
最新回复
(
0
)