首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
判断下列3维向量的集合是不是R3的子空间,如是子空间,则求其维数与一组基: (Ⅰ)W1={(x,y,x)|x>0}; (Ⅱ)W2={x,y,z)|x=0}; (Ⅲ)W3={(x,y,z)|x+y-2z=0}; (Ⅳ)W4:{(x,y,z)|3x-2y+z=
判断下列3维向量的集合是不是R3的子空间,如是子空间,则求其维数与一组基: (Ⅰ)W1={(x,y,x)|x>0}; (Ⅱ)W2={x,y,z)|x=0}; (Ⅲ)W3={(x,y,z)|x+y-2z=0}; (Ⅳ)W4:{(x,y,z)|3x-2y+z=
admin
2016-10-26
69
问题
判断下列3维向量的集合是不是R
3
的子空间,如是子空间,则求其维数与一组基:
(Ⅰ)W
1
={(x,y,x)|x>0};
(Ⅱ)W
2
={x,y,z)|x=0};
(Ⅲ)W
3
={(x,y,z)|x+y-2z=0};
(Ⅳ)W
4
:{(x,y,z)|3x-2y+z=1};
(Ⅴ)W
5
={(x,y,z|
}.
选项
答案
(Ⅰ)W
1
不是子空间,因为W
1
对数乘向量不封闭.例如α=(1,2,3)∈W
1
,但k<0时,kα=(k,2k,3k)[*]W
1
. (Ⅱ)W
2
是子空间.因为α=(0,a,b),β=(0,c,d)∈W
2
,而 α+β=(0,a+c,b+d)∈W
2
, kα=(0,ka,kb)∈W
2
, 即W
2
对于运算封闭,W
2
是子空间.又(0,1,0),(0,0,1)线性无关且能表示W
2
中任一向量,因而是W
2
的一组基,那么dimW
2
=2. (Ⅲ)W
3
是子空间,如α,β∈W
3
,即α,β是齐次方程x+y一2z=0的解.由于α+β,kα仍是解,故α+β∈W
3
, kα∈W
3
,W
3
对运算封闭,是子空间. (-1,1,0),(2,0,1)是基础解系,也就是W
3
的一组基,那么dimW
3
=2. (Ⅳ)W
4
不是子空间.因为非齐次方程组的解相加不再是此方程组的解,即W
4
对加法不封闭. (Ⅴ)W
5
不是子空间,因为条件等同于[*].
解析
要判断W是不是子空间,就是要检查W对于向量的加法及数乘这两个运算是否封闭.如W是子空间,则W中向量的极大线性无关组就是一组基,而向量组的秩就是子空间的维数.
转载请注明原文地址:https://kaotiyun.com/show/omu4777K
0
考研数学一
相关试题推荐
[*]
4π
设随机变量X的绝对值不大于1,P(X=1)=1/4,P(X=-1)=1/8,而在事件{-1
设x元线性方程组Ax=b,其中,证明行列式丨A丨=(n+1)an.
设3阶矩阵A的特征值为1,2,2,E为3阶单位矩阵,则丨4A-1-E丨=_________.
设齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均足Bx=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③符Ax=0与Bx=0同解,则秩(A)
设Г:x=x(t),y=y(t)(α<t<β)是区域D内的光滑曲线,即x(t),y(t),(α,β)有连续的导数且xˊ2(t)+yˊ2(t)≠0,f(x,y)在D内有连续的偏导数,若Po∈Γ是f(x,y)在Γ上的极值点,求证:f(x,y)在点Po沿Γ的切线
已知α1=(﹣1,1,a,4)T,α2=(﹣2,1,5,a)T,α3=(a,2,10,1)T是四阶方阵A的属于三个不同特征值的特征向量,则口的取值为().
已知4阶方阵A=(α1,α2,α2,α4),α1,α2,α3,α4均为4维列向量,其α2,α3,α4线性无关,α=2α2-aα3,如果β=α1+α2+α3+α
随机试题
地址重定位方式分为哪几种?各具有什么特点?
根据《非处方药专有标识管理规定(暂行)》,用作乙类非处方药和经营非处方药药品的企业指南性标志的是
发包人在工程款中逐期扣回预付款,但剩余的预付款担保金额不得()未被扣回的预付款金额。
“备案号”栏应填()。“合同协议号”栏应填()。
洗涤在生活、生产中不可缺少,下列洗涤方法中利用了乳化原理的是()。
把如图13中的拉线开关、螺口灯泡和三孔插座正确地连人家庭电路中(要求用拉线开关控制螺口灯泡)。
下列关于全国人民代表大会代表权利的表述。正确的是()。
根据现有史料考证,将廷尉改为大理寺,以大理寺卿为官名的朝代是()。(2017单37)
若有以下定义(设int类型变量占2个字节)inti=8,j=9;则以下语句:printf(’’i=%%d,j=%%%d\n’’,i,j);输出的结果是()。
百合子さんと一番親しい親友です。
最新回复
(
0
)