首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
判断下列3维向量的集合是不是R3的子空间,如是子空间,则求其维数与一组基: (Ⅰ)W1={(x,y,x)|x>0}; (Ⅱ)W2={x,y,z)|x=0}; (Ⅲ)W3={(x,y,z)|x+y-2z=0}; (Ⅳ)W4:{(x,y,z)|3x-2y+z=
判断下列3维向量的集合是不是R3的子空间,如是子空间,则求其维数与一组基: (Ⅰ)W1={(x,y,x)|x>0}; (Ⅱ)W2={x,y,z)|x=0}; (Ⅲ)W3={(x,y,z)|x+y-2z=0}; (Ⅳ)W4:{(x,y,z)|3x-2y+z=
admin
2016-10-26
94
问题
判断下列3维向量的集合是不是R
3
的子空间,如是子空间,则求其维数与一组基:
(Ⅰ)W
1
={(x,y,x)|x>0};
(Ⅱ)W
2
={x,y,z)|x=0};
(Ⅲ)W
3
={(x,y,z)|x+y-2z=0};
(Ⅳ)W
4
:{(x,y,z)|3x-2y+z=1};
(Ⅴ)W
5
={(x,y,z|
}.
选项
答案
(Ⅰ)W
1
不是子空间,因为W
1
对数乘向量不封闭.例如α=(1,2,3)∈W
1
,但k<0时,kα=(k,2k,3k)[*]W
1
. (Ⅱ)W
2
是子空间.因为α=(0,a,b),β=(0,c,d)∈W
2
,而 α+β=(0,a+c,b+d)∈W
2
, kα=(0,ka,kb)∈W
2
, 即W
2
对于运算封闭,W
2
是子空间.又(0,1,0),(0,0,1)线性无关且能表示W
2
中任一向量,因而是W
2
的一组基,那么dimW
2
=2. (Ⅲ)W
3
是子空间,如α,β∈W
3
,即α,β是齐次方程x+y一2z=0的解.由于α+β,kα仍是解,故α+β∈W
3
, kα∈W
3
,W
3
对运算封闭,是子空间. (-1,1,0),(2,0,1)是基础解系,也就是W
3
的一组基,那么dimW
3
=2. (Ⅳ)W
4
不是子空间.因为非齐次方程组的解相加不再是此方程组的解,即W
4
对加法不封闭. (Ⅴ)W
5
不是子空间,因为条件等同于[*].
解析
要判断W是不是子空间,就是要检查W对于向量的加法及数乘这两个运算是否封闭.如W是子空间,则W中向量的极大线性无关组就是一组基,而向量组的秩就是子空间的维数.
转载请注明原文地址:https://kaotiyun.com/show/omu4777K
0
考研数学一
相关试题推荐
[*]
某保险公司设置某一险种,规定每一保单有效期为一年,有效理赔一次,每个保单收取保费500元,理赔额为40000元.据估计每个保单索赔概率为0.01,设公司共卖出这种保单8000个,求该公司在该险种上获得的平均利润.
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.试将x=x(y)所满足的微分方程(d2x)/(dy2)+(y+sinx)(dx/dy)=0变换为y=y(x)满足的微分方程;
已知曲线y=x3-3a2x+b与x轴相切,则b2可以通过Ⅱ表示为b2=________.
差分方程yt+1-yt=t2t的通解为_______.
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.求AB-1.
设齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均足Bx=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③符Ax=0与Bx=0同解,则秩(A)
设随机变量X服从参数为(2,p)的二项分布,随机变量y服从参数为(3,p)的二项分布,若P丨x≥1丨=5/9,则P丨Y≥1丨=_________.
设α1,α2,α3是四元非齐次方程组AX=b的三个解向量。且秩r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
计算下列各题:(Ⅰ)设,其中f(t)三阶可导,且f″(t)≠0,求;(Ⅱ)设求的值.
随机试题
必须注射给药才具有抗惊厥作用的药物为
A.天冬氨酸氨基转移酶B.淀粉酶C.碱性磷酸酶D.谷胱甘肽过氧化物酶E.单胺氧化酶犬胰腺炎发作时,其血液和尿液中活性升高的酶是
在应用完全随机设计两独立样本比较的Wileoxon秩和检验时,在编秩次时不同组出现相同的数值
合同发生纠纷时,通过经济合同管理机关的主持,自愿达成协议,以求解决经济合同纠纷的方法是( )。
下列关于权证清算交收的说法中,正确的有(.)
一项所有者权益增加会引起()。
中国古代各年龄段的称呼都有所不同,其中“不惑之年”是指:
有人说:“教师的素质高低取决于其知识的丰富程度。”
“四马分肥”是指在对资本主义工商业进行社会主义改造的第一和第二步,即在实行初级形式的国家资本主义的企业和实行个别企业公私合营的企业,利润按四个方面进行分配即“四马分肥”。“四马”具体是指()
设一棵树的度为4,其中度为4,3,2,1的结点个数分别为2,3,3,0。则该棵树中的叶子结点数为()。
最新回复
(
0
)