首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上满足|f"(x)|≤2,且f(x)在(a,b)内取到最小值.证明:|f’(a)I+|f’(b)|≤2(b一a).
设f(x)在[a,b]上满足|f"(x)|≤2,且f(x)在(a,b)内取到最小值.证明:|f’(a)I+|f’(b)|≤2(b一a).
admin
2016-09-30
55
问题
设f(x)在[a,b]上满足|f"(x)|≤2,且f(x)在(a,b)内取到最小值.证明:|f’(a)I+|f’(b)|≤2(b一a).
选项
答案
因为f(x)在(a,b)内取到最小值,所以存在c∈(a,b),使得f(c)为f(x)在[a,b]上的最小值,从而f’(c)=0. 由微分中值定理得 [*] 其中ξ∈(a,c),η∈(c,b), 两式取绝对值得 [*] 两式相加得|f’(a)|+|f’(b)|≤2(b一a).
解析
转载请注明原文地址:https://kaotiyun.com/show/orT4777K
0
考研数学三
相关试题推荐
[*]
[*]
证明下列关系式:A∪B=A∪(B-A)=(A-B)∪(B-A)∪(A∩B).
一个家庭中有两个小孩.(1)已知其中有一个是女孩,求另一个也是女孩的概率;(2)已知第一胎是女孩,求第二胎也是女孩的概率.
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
设f(x)是处处可导的奇函数,证明:对任-b>0,总存在c∈(-b,b)使得fˊ(c)=f(b)/b.
利用函数的凹凸性,证明下列不等式:
求由下列方程所确定的隐函数y=y(x)的导数dy/dx:(1)y=1-xey;(2)xy=ex+y;(3)xy=yx;(4)y=1+xsiny.
设u(x,y,z),v(x,y,z)是两个定义在闭区域Ω上的具有二阶连续偏导数的函数,依次表示u(x,y,z),v(x,y,z)沿∑的外法线方向的方向导数.证明:其中∑是空间闭区域Ω的整个边界曲面.
用常数变易法求下列线性微分方程的通解:(1)y〞+y=secx,已知y1(x)=cosx是方程y〞+y=0的一个解;(2)(2x-1)y〞-(2x+1)yˊ+2y=0,已知y1(x)=ex是该方程的一个解;(3)x2y〞-2xyˊ+2y=2x3,已知
随机试题
治疗哮喘虚证的主穴为
Businesstravelhelpsyouconnectwithclients,withothersinyourindustry,andattendmajoreventsaroundtheworld.Butall
(2013年第158题)谷氨酰胺的生物学作用有
气管切开患儿护理哪些是正确的()
舌动脉颞浅动脉
光明供销社于1988年3月间,从某县农贸公司购得平价化肥40吨,而后擅自抬高价格出售。每吨价格为900至1000元不等,共多获利一万四千元。县工商行政管理检查所经调查认为光明供销社抬价销售化肥,违反了省政府制定的《投机倒把行政处罚暂行条例》的规定,已构成投
施工总承包管理模式与施工总承包模式相比,其优点有()。
个人住房贷款,借款人以符合条件的有价证券作质押的,其贷款额度最高不超过质押权利凭证票面价值的()
我国学者对隐性课程的研究始于20世纪80年代中期,简述隐性课程的特点。
根据文字资料,回答问题:2008年1月24日在国务院新闻办举行的新闻发布会上,国家统计局局长谢伏瞻宣布,初步核算,2007年国内生产总值为246619亿元,比上年增长11.4%,增速加快0.3个百分点,连续五年增速达到或超过10%。国民经济保持平稳快
最新回复
(
0
)