首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的特征值是1,2,3,矩阵A的属于特征值1,2的特征向量分别为α1=[-1,-1,1]T,α2=[1,-2,-1]T. 求矩阵A.
设三阶实对称矩阵A的特征值是1,2,3,矩阵A的属于特征值1,2的特征向量分别为α1=[-1,-1,1]T,α2=[1,-2,-1]T. 求矩阵A.
admin
2019-05-08
53
问题
设三阶实对称矩阵A的特征值是1,2,3,矩阵A的属于特征值1,2的特征向量分别为α
1
=[-1,-1,1]
T
,α
2
=[1,-2,-1]
T
.
求矩阵A.
选项
答案
解一 令矩阵[*]则 P
-1
AP=diag(1,2,3), 即 A=Pdiag(1,2,3)P
-1
, 易求得 [*] 故 [*] 解二 由于α
1
,α
2
,ξ两两正交,为求正交矩阵Q只需将其单位化,即 [*] 因此可取正交矩阵Q代替可逆矩阵P,即 [*] 则有 Q
-1
AQ=Q
T
AQ=diag(1,2,3), A=Pdiag(1,2,3)P
-1
=Qdiag(1,2,3)Q
-1
=Qdiag(1,2,3)Q
T
=[*] 解二比解一虽然多了单位化的步骤,但免去了求逆的计算(因Q为正交矩阵,有Q
-1
=Q
T
).
解析
转载请注明原文地址:https://kaotiyun.com/show/osJ4777K
0
考研数学三
相关试题推荐
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:存在ξ∈(a,b),使得f’(ξ)+f(ξ)g’(ξ)=0.
将f(x)=arctanx-x展开成x的幂级数.
设平面区域D:1≤x2+y2≤4,f(x,y)是区域D上的连续函数,则dxdy等于().
设f(x)在[a,b]上连续,在(a,b)内二阶可导,连接点A(a,f(a)),B(b,f(b))的直线与曲线y=f(x)交于点C(c,f(c))(其中a<c<b).证明:存在ξ∈(a,b),使得f’’(ξ)=0.
微分方程xy’=+y的通解为______.
设总体X的概率密度为其中参数θ(0<θ<1)未知。X1,X2,…,Xn是来自总体X的简单随机样本,是样本均值。求参数θ的矩估计量。
设相互独立的两随机变量X,Y均服从[0,3]上的均匀分布,则P{1<max(X,Y)≤2}的值为()
设f(x)在(-1,1)内二阶连续可导,且f’’(x)≠0.证明:(1)对(-1,1)内任一点x≠0,存在唯一的θ(x)∈(0,1),使得f(x)=f(0)+xf’[θ(x)x];(2).
设A为n阶矩阵,且|A|=a≠0,则|(kA)*|=______.
设总体X服从参数为P的几何分布,如果取得样本观测值为X1,X2,…,Xn,求参数p的矩估计值与最大似然估计值。
随机试题
有如下类定义:classPa{intk;public:Pa():k(0){}//①Pa(intn):k(n){}//②
上皮异常增生不包括( )
治疗中焦虚寒,肝气上逆之巅顶头痛,宜选用
甲公司铺设管道,在路中挖一深坑。设置了路障和警示标志。乙驾车撞倒全部标志,致丙骑摩托车路经该地时避让不及而驶向人行道,造成丁轻伤。对丁的损失,下列哪一选项是正确的?
章小妹今年22岁,现在北京市丰台区一家服装厂打工,老家在河南省平昌县农村。关于其身份证办理的事项,下列哪一说法是错误的?()
东北地区某综合楼,建筑高度为110m,消防水池设置了两路消防供水,火灾情况下能满足消防要求。在建筑顶层的一个专用房间内设置了自动喷水系统的高位水箱、稳压泵和气压罐,在水泵房内设置了一组自动喷水消防水泵,采用“二用二备”,主消防泵采用电动离心泵,备用消防泵采
世界贸易组织规定当《1994年关贸总协定》的某一规定与多边货物贸易具体协议的某一条款规定发生冲突时,《1994年关贸总协定》的规定在冲突涉及的范围内具有优先效力。()
收款凭证的左上角科目为(),登记的科目是“库存现金”或“银行存款”。
北宋时期,西湖十景已经形成。()
Stinking(发臭的)BusesStinkingbusesjam(挤满)thecrowdedstreet.Drivers(51)atoneanotherandhonk(鸣喇叭)theirhorns.Smog(烟雾)h
最新回复
(
0
)