首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的特征值是1,2,3,矩阵A的属于特征值1,2的特征向量分别为α1=[-1,-1,1]T,α2=[1,-2,-1]T. 求矩阵A.
设三阶实对称矩阵A的特征值是1,2,3,矩阵A的属于特征值1,2的特征向量分别为α1=[-1,-1,1]T,α2=[1,-2,-1]T. 求矩阵A.
admin
2019-05-08
59
问题
设三阶实对称矩阵A的特征值是1,2,3,矩阵A的属于特征值1,2的特征向量分别为α
1
=[-1,-1,1]
T
,α
2
=[1,-2,-1]
T
.
求矩阵A.
选项
答案
解一 令矩阵[*]则 P
-1
AP=diag(1,2,3), 即 A=Pdiag(1,2,3)P
-1
, 易求得 [*] 故 [*] 解二 由于α
1
,α
2
,ξ两两正交,为求正交矩阵Q只需将其单位化,即 [*] 因此可取正交矩阵Q代替可逆矩阵P,即 [*] 则有 Q
-1
AQ=Q
T
AQ=diag(1,2,3), A=Pdiag(1,2,3)P
-1
=Qdiag(1,2,3)Q
-1
=Qdiag(1,2,3)Q
T
=[*] 解二比解一虽然多了单位化的步骤,但免去了求逆的计算(因Q为正交矩阵,有Q
-1
=Q
T
).
解析
转载请注明原文地址:https://kaotiyun.com/show/osJ4777K
0
考研数学三
相关试题推荐
求微分方程y’’=y’2满足初始条件y(0)=y’(0)=1的特解.
求微分方程y’’+2x(y’)2=0满足初始条件y(0)=1,y’(0)=1的特解.
已知(x,y)在以点(0,0),(1,一1),(1,1)为顶点的三角形区域上服从均匀分布。(Ⅰ)求(X,Y)的联合密度函数f(x,y);(Ⅱ)求边缘密度函数fX(x),fY(y)及条件密度函数fX|Y(x|y),fY|X(y|x);并问X与Y是否独立;
两台同样的自动记录仪,每台无故障工作的时间服从参数为5的指数分布。首先开动其中一台,当其发生故障时停用,而另一台自行开动,试求两台记录仪无故障工作的总时间T的概率密度。
A,B,C三个随机事件必相互独立,如果它们满足条件()
设二维随机变量(X,Y)的概率密度为f(x,y)=(Ⅰ)计算两个边缘概率密度;(Ⅱ)求条件概率密度fY|X(y|x=2);(Ⅲ)求条件概率P{Y≤1}X≤1}。
设某班车起点站上客人数X服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p(0<p<1),且中途下车与否相互独立。Y为中途下车的人数,求:(Ⅰ)在发车时有n个乘客的条件下,中途有m人下车的概率;(Ⅱ)二维随机变量(X,Y)的概率分布。
设二维随机变量(X,Y)在xOy平面上由直线y=x与曲线y=x2所围成的区域上服从均匀分布,则P{0<x<=________。
设A=方程组AX=B有解但不唯一.(1)求a;(2)求可逆矩阵P,使得P-1AP为对角阵;(3)求正交阵Q,使得QTAQ为对角阵.
设半径为R的球面S的球心在定球面x2+y2+z2=a2(a>0)上,问R取何值时,球面S在定球面内的面积最大?
随机试题
下列关于蛛网膜和软膜的论述哪项是错误的()
竞争性抑制剂作用特点是
甲被乙家的狗咬伤,要求乙赔偿医药费,乙认为甲被狗咬与自己无关拒绝赔偿。下列哪一选项是正确的?()
在20m巷道范围内,涌出瓦斯量大于或等于()m3/min,且持续时间在8h以上时,该采掘区域即定为瓦斯喷出危险区域。
下列选项中,对于房屋建筑工程施工总承包一级企业应满足的注册资本金与净资产要求描述正确的一项是()。
碾压混凝土坝的施工工艺程序正确的是( )。
根据《统计法》规定,地方各级人民政府、政府统计机构和有关部门以及各单位的负责人()。
就上市公司而言,将股东财富最大化作为财务管理目标的缺点之一是不容易被量化。()
从重从快的法律依据是()。
对人民警察的处分分为几种?
最新回复
(
0
)