首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs,β都是n维向量,证明:
设α1,α2,…,αs,β都是n维向量,证明:
admin
2017-06-08
73
问题
设α
1
,α
2
,…,α
s
,β都是n维向量,证明:
选项
答案
把α
1
,α
2
,…,α
s
的一个最大无关组放在α
1
,α
2
,…,α
s
,β中考察,看它是否也是α
1
,…,α
3
,β的最大无关组. 设(Ⅰ)是α
1
,α
2
,…,α
s
的一个最大无关组,则它也是α
1
,α
2
,…,α
s
,β中的一个无关组. 问题是:(Ⅰ)增添β后是否相关? 若β可用α
1
,α
2
,…,α
s
表示,则β可用(Ⅰ)表示(因为α
1
,α
2
,…,α
s
和(Ⅰ)等价!),于是(Ⅰ)增添β后相关,从而(Ⅰ)也是α
1
,α
2
,…,α
s
,β的最大无关组,r(α
1
,α
2
,…,α
s
,β)=r(α
1
,α
2
,…,α
s
). 若β不可用α
1
,α
2
,…,α
s
表示,则β不可用(Ⅰ)表示,(Ⅰ)增添β后无关,从而(Ⅰ)不是α
1
,α
2
,…,α
s
,β的最大无关组,此时(Ⅰ),β是α
1
,α
2
,…,α
s
,β的最大无关组,r(α
1
,α
2
,…,α
s
,β)=r(α
1
,α
2
,…,α
s
)+1.
解析
转载请注明原文地址:https://kaotiyun.com/show/p0t4777K
0
考研数学二
相关试题推荐
[*]
[*]
设f(x)=∫0xsint/(π-t)dt,则∫0πf(x)dx=________.
对离散型情形证明:(1)E(X+Y)=EX+EY.(2)EXY=EXEY
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
设三阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.求矩阵A.
设A为3阶实对称矩阵,A的秩为2,且求矩阵A.
设n,元线性方程组Ax=b,其中当a为何值时,该方程组有唯一解,并求x1;
设矩阵A与B相似,且求可逆矩阵P,使P-1AP=B.
设4维向量组α1=(1+α,1,1,1)T,α2=(2,2+α,2,2)T,α3=(3,3,3+α,3)T,α4=(4,4,4,4+α)T,问口为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
随机试题
计算x2ydxdy,其中区域D为1≤x2+y2≤4在第一象限的部分区域.
氯甲醚是强烈烷化剂,具有直接致癌作用。其导致的最常见职业性肿瘤为
印度博帕尔事件的主要污染物是前苏联切尔诺贝利核电站爆炸的主要污染物是
A.收敛固涩B.泻热通便C.软坚散结D.调和药性E.行气活血苦味的作用是()
运用随机模式和成本分析模式计算最佳现金持有量,均会涉及到现金的()。
德育过程的基本矛盾是教育者提出的______与受教育者已有______的矛盾。
任何货币的一个必要条件是本身具有价值。()
希腊神话散见于很多作品,保存希腊神话较多的作品有_______。
下列关于平等权的表述中,正确的是()
0
最新回复
(
0
)