首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶实对称矩阵.证明: (1)存在实数c,使对一切x∈Rn,有|xTAx|≤cxTx. (2)若A正定,则对任意正整数k,Ak也是对称正定矩阵. (3)必可找到一个数a,使A+aE为对称正定矩阵.
设A是n阶实对称矩阵.证明: (1)存在实数c,使对一切x∈Rn,有|xTAx|≤cxTx. (2)若A正定,则对任意正整数k,Ak也是对称正定矩阵. (3)必可找到一个数a,使A+aE为对称正定矩阵.
admin
2018-08-02
34
问题
设A是n阶实对称矩阵.证明:
(1)存在实数c,使对一切x∈R
n
,有|x
T
Ax|≤cx
T
x.
(2)若A正定,则对任意正整数k,A
k
也是对称正定矩阵.
(3)必可找到一个数a,使A+aE为对称正定矩阵.
选项
答案
(1)设A的特征值为λ
1
,λ
2
,…,λ
n
.令c=max{|λ|
1
,|λ|
2
,…,|λ|
n
},则存在正交变换x=Py.使x
T
Ax=[*]λ
i
y
i
2
,且y
T
y=x
T
x,故|x
T
Ax|=[*]y
i
2
=cy
T
y=cx
T
x. (2)设A的特征值为λ
1
,…,λ
n
,则λ
i
>0(i=1,…,n),于是,由A
k
的特征值为λ
1
k
,…,λ
n
k
.它们全都大于0,可知A
k
为正定矩阵. (3)因为(A+aE)
T
=A+aE,所以A+aE对称.又若A的特征值为λ
1
,…,λ
n
,则A+aE的特征值为λ
1
+a,…,λ
n
+a.若取a=max{|λ
1
|+1,…|λ
n
|+1},则λ
i
+a≥|λ
i
|+|λ
i
|+1≥1,所以A+aE正定.
解析
转载请注明原文地址:https://kaotiyun.com/show/p2j4777K
0
考研数学二
相关试题推荐
(2007年试题,一)设向量组α1,α2,α3线性无关,则下列向量组线性相关的是().
设ξ1=为矩阵A=的一个特征向量.(I)求常数a,b及ξ1所对应的特征值;(Ⅱ)矩阵A可否相似对角化?若A可对角化,对A进行相似对角化;若A不可对角化,说明理由.
设矩阵A=且A3=0(I)求a的值; (Ⅱ)若矩阵X满足X—XA2一AX+AXA2=E,其中E为3阶单位矩阵,求X.
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
设f(x)在[a,b]上连续,证明:∫abf(x)dx=∫ab(a+b-x)dx.
设f(x)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得
设A为三阶矩阵,Aαi=iαi(i=1,2,3),,求A.
设n阶矩阵A满足(aE-A)(bE-A)=O且a≠b.证明:A可对角化.
设A,B皆为n阶矩阵,则下列结论正确的是().
随机试题
A.精子细胞B.精母细胞C.次级精母细胞D.肌样细胞不再进行分裂只进行变态的是()
病毒性心肌炎的发病年龄多见于
1岁患儿,呕吐、腹泻3天入院,大便每日20次以上,水样便。查体:T37.3℃,P140次/分,嗜睡,皮肤弹性极差,皮肤发花,四肢凉。目前恰当的诊断是
以下哪项不是小叶性肺炎常见的并发症()
下列压缩机中,属于速度型压缩机的有()压缩机。
下列项目中产生可抵扣暂时性差异的有()。
下列关于附属资本说法不正确的是()。
基于“决策人”假设的管理措施主要包括()。
WhatisFreud’scontributionstopsychology?
•Lookatthestatementsbelowandthefollowingintroductionaboutthetypesofownership.•Whichtypeofownership(A,Bor
最新回复
(
0
)