首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶实对称矩阵.证明: (1)存在实数c,使对一切x∈Rn,有|xTAx|≤cxTx. (2)若A正定,则对任意正整数k,Ak也是对称正定矩阵. (3)必可找到一个数a,使A+aE为对称正定矩阵.
设A是n阶实对称矩阵.证明: (1)存在实数c,使对一切x∈Rn,有|xTAx|≤cxTx. (2)若A正定,则对任意正整数k,Ak也是对称正定矩阵. (3)必可找到一个数a,使A+aE为对称正定矩阵.
admin
2018-08-02
63
问题
设A是n阶实对称矩阵.证明:
(1)存在实数c,使对一切x∈R
n
,有|x
T
Ax|≤cx
T
x.
(2)若A正定,则对任意正整数k,A
k
也是对称正定矩阵.
(3)必可找到一个数a,使A+aE为对称正定矩阵.
选项
答案
(1)设A的特征值为λ
1
,λ
2
,…,λ
n
.令c=max{|λ|
1
,|λ|
2
,…,|λ|
n
},则存在正交变换x=Py.使x
T
Ax=[*]λ
i
y
i
2
,且y
T
y=x
T
x,故|x
T
Ax|=[*]y
i
2
=cy
T
y=cx
T
x. (2)设A的特征值为λ
1
,…,λ
n
,则λ
i
>0(i=1,…,n),于是,由A
k
的特征值为λ
1
k
,…,λ
n
k
.它们全都大于0,可知A
k
为正定矩阵. (3)因为(A+aE)
T
=A+aE,所以A+aE对称.又若A的特征值为λ
1
,…,λ
n
,则A+aE的特征值为λ
1
+a,…,λ
n
+a.若取a=max{|λ
1
|+1,…|λ
n
|+1},则λ
i
+a≥|λ
i
|+|λ
i
|+1≥1,所以A+aE正定.
解析
转载请注明原文地址:https://kaotiyun.com/show/p2j4777K
0
考研数学二
相关试题推荐
设非齐次线性方程组有三个线性无关解α1,α2,α3,(Ⅰ)证明系数矩阵的秩r(A)=2;(Ⅱ)求常数a,b及通解.
设矩阵A=b=若集合Ω={1,2},则线性方程组Ax=b有无穷多解的充分必要条件为
用正交变换法化二次型f(x1,x2,x3)=x12+x2x2+x3x2-4x1x2-4x1x3-4x2x3为标准二次型
设f(x)在[a,b]上连续,证明:∫abf(x)dx=∫ab(a+b-x)dx.
设A为三阶矩阵,A的特征值为λ1=1,λ2=2,λ3=3,其对应的线性无关的特征向量分别为,求Anβ.
求二元函数z=f(x,y)=x2y(4-x-y)在由x轴、y轴及x+y=6所围成的闭区域D上的最小值和最大值.
设A为n阶矩阵,且|A|=0,则A().
设非负函数f(x)当x≥0时连续可微,且f(0)=1.由y=f(x),x轴,y轴及过点(x,0)且垂直于x轴的直线围成的图形的面积与y=f(x)在[0,x]上弧的长度相等,求f(x).
设A是m×n矩阵,且m>n,下列命题正确的是().
随机试题
行道迟迟,载渴载饥。载:
患者,女,20岁。持续发热1周,入院经血培养、肥达检测确诊为“伤寒”,经氧氟沙星治疗10天,体温降至正常,入院后第12天,突然出现剧烈腹痛,出冷汗。体查:腹部压痛及反跳痛,肝浊音界消失。血常规:WBC3.6×109/L,N0.85,腹部X线摄片示膈下游
民事主体为实现某种利益,依法为某种行为或不为某种行为的可能性称之为()。
塔式起重机应安排在第31d(上班时刻)进场投入使用。塔式起重机在工作E与工作G之间没有闲置。
托盘应用的两种方式是()。
给定资料一年前,G省L县古寨村的王育才还从没想过自己能“当官”。就在2017年10月,这个种了大半辈子地的农民老汉,被推选为村里的地膜回收站站长。“以前,地膜留在地里,不仅影响来年庄稼发芽,到了冬天还被风刮得房前屋后到处都是!”王育才说
下列有关生物的常识说法,错误的是()。
Aseverytravelersoonfindsout,itisimportanttoknowthelocaltime.【C1】______untilthelastcentury,everytownandvillag
Whichregionofthecitywouldthemanliketolivein?
TheFoodandDragAdministrationsaidonWednesdaythatitistryingtotrackdownasmanyas386pigletsthatmayhavebeengen
最新回复
(
0
)