首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶实对称矩阵.证明: (1)存在实数c,使对一切x∈Rn,有|xTAx|≤cxTx. (2)若A正定,则对任意正整数k,Ak也是对称正定矩阵. (3)必可找到一个数a,使A+aE为对称正定矩阵.
设A是n阶实对称矩阵.证明: (1)存在实数c,使对一切x∈Rn,有|xTAx|≤cxTx. (2)若A正定,则对任意正整数k,Ak也是对称正定矩阵. (3)必可找到一个数a,使A+aE为对称正定矩阵.
admin
2018-08-02
61
问题
设A是n阶实对称矩阵.证明:
(1)存在实数c,使对一切x∈R
n
,有|x
T
Ax|≤cx
T
x.
(2)若A正定,则对任意正整数k,A
k
也是对称正定矩阵.
(3)必可找到一个数a,使A+aE为对称正定矩阵.
选项
答案
(1)设A的特征值为λ
1
,λ
2
,…,λ
n
.令c=max{|λ|
1
,|λ|
2
,…,|λ|
n
},则存在正交变换x=Py.使x
T
Ax=[*]λ
i
y
i
2
,且y
T
y=x
T
x,故|x
T
Ax|=[*]y
i
2
=cy
T
y=cx
T
x. (2)设A的特征值为λ
1
,…,λ
n
,则λ
i
>0(i=1,…,n),于是,由A
k
的特征值为λ
1
k
,…,λ
n
k
.它们全都大于0,可知A
k
为正定矩阵. (3)因为(A+aE)
T
=A+aE,所以A+aE对称.又若A的特征值为λ
1
,…,λ
n
,则A+aE的特征值为λ
1
+a,…,λ
n
+a.若取a=max{|λ
1
|+1,…|λ
n
|+1},则λ
i
+a≥|λ
i
|+|λ
i
|+1≥1,所以A+aE正定.
解析
转载请注明原文地址:https://kaotiyun.com/show/p2j4777K
0
考研数学二
相关试题推荐
设x与y均大于0且x≠y,证明
(2007年试题,一)设向量组α1,α2,α3线性无关,则下列向量组线性相关的是().
设ξ1=为矩阵A=的一个特征向量.(I)求常数a,b及ξ1所对应的特征值;(Ⅱ)矩阵A可否相似对角化?若A可对角化,对A进行相似对角化;若A不可对角化,说明理由.
设α,β为四维非零的正交向量,且A=αβT,则A的线性无关的特征向量个数为().
设矩阵A=相似于矩阵B= (I)求a,b的值; (II)求可逆矩阵P,使P-1AP为对角矩阵.
设矩阵A=b=若集合Ω={1,2},则线性方程组Ax=b有无穷多解的充分必要条件为
证明:对任意的x,y∈R且x≠y,有
设f(x)连续,证明:∫0x[∫0tf(u)du]dt=∫0xf(t)(x-t)dt.
当0<x<时,证明:<sinx<x.
函数f(x)=x3-3x+k只有一个零点,则k的范围为().
随机试题
患者,男,55岁。腹痛拒按,烦渴喜饮,大便秘结,潮热汗出,小便短黄,舌质红,苔黄腻,脉滑数。治法宜选用
甲是现役军人,乙是一般的工人。双方于1997年登记结婚。2002年1月乙生一女孩。此后,两人经常吵架。2004年2月,乙又生一女孩。由于甲封建思想严重,重男轻女。在乙生育两个女孩之后,经常没事找事与乙吵架,最终甲以夫妻感情破裂,性格不合为由于2005年1月
在材料使用过程中,对部分小型及零星材料根据工程量计算出所需材料量,将其折算成费用,由作业者采用()控制。
系统风险又称为()。Ⅰ.可分散风险Ⅱ.不可分散风险Ⅲ.不可回避风险Ⅳ.可回避风险
2007年10月4日,韩国总统卢武铉与朝鲜领导人金正日举行了历史性会晤,签署了《北南关系发展与和平繁荣宣言》,其内容包括
设有二维数组A[0..9,0..19],其每个元素占两个字节,数组按列优先顺序存储,第一个元素的存储地址为100,那么元素A[6,6]的存储地址为【】。
表单文件的扩展名是( )。
计算机病毒的危害表现为()。
A、OK,Iwill.B、Takecare.C、Thankyou.D、Let’sgo.A本题考查对Could引导的提出请求的一般疑问句的回答。对于此类问题的回答分为肯定和否定两种:肯定回答一般为Yes,ofcourse/Certainl
RainforestsDidyouknowtherearetwotypesofRainforest-thetemperateandthetropical?Tropicalrainforestsarefoundc
最新回复
(
0
)