首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[一2,2]上二阶可导,且|f(x)|≤1,又f2(0)+[f’(0)]2=4. 试证:在(一2,2)内至少存在一点ξ,使得f(ξ)+f"(ξ)=0.
设函数f(x)在[一2,2]上二阶可导,且|f(x)|≤1,又f2(0)+[f’(0)]2=4. 试证:在(一2,2)内至少存在一点ξ,使得f(ξ)+f"(ξ)=0.
admin
2018-04-18
63
问题
设函数f(x)在[一2,2]上二阶可导,且|f(x)|≤1,又f
2
(0)+[f’(0)]
2
=4.
试证:在(一2,2)内至少存在一点ξ,使得f(ξ)+f"(ξ)=0.
选项
答案
根据拉格朗日中值定理有f(0)一f(一2)=2f’(ξ
1
),一2<ξ
1
<0, f(2)一f(0)=2f’(ξ
2
),0<ξ
2
<2. 由|f(x)|≤1知|f’(ξ
1
)=[*]≤1. 令φ(x)=f
2
(x)+[f’(x)]
2
,则有φ(ξ
1
)≤2,φ(ξ
2
)≤2. 因为φ(x)在[ξ
1
,ξ
2
]上连续,且φ(0)=4,设φ(x)在[ξ
1
,ξ
2
]上的最大值在ξ∈[ξ
1
,ξ
2
][*](一2,2)上取,则φ(ξ)≥4,且φ在[ξ
1
,ξ
2
]上可导,由费马定理有:φ’(ξ)=0,即 2f(ξ).f(ξ)+2f(ξ).f"(ξ)=0. 因为|f(x)|≤l,且φ(ξ)≥4,所以f’(ξ)≠0,于是有 f(ξ)+f"(ξ)=0,ξ∈(一2,2).
解析
转载请注明原文地址:https://kaotiyun.com/show/p3k4777K
0
考研数学二
相关试题推荐
假设曲线l1:y=1-x2(0≤x≤1)与x轴,y轴所围成区域被曲线l2:y=ax2分为面积相等的两部分,其中a是大于零的常数,试确定a的值.
设A是n阶方阵,线性方程组AX=0有非零解,则线性非齐次方程组ATX=b对任意b=(b1,b2,…,bn)T().
计算二重积分,其中D={(x,y)|0≤x≤1,0≤y≤1}.
(2004年试题,三(1))求极限
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离恒等于该点处的切线在y轴上的截距,且L经过点.(1)试求曲线L的方程;(2)求L位于第一象限部分的一条切线,使该切线与L以及两坐标轴所围图形的面积最小.
已知的一个特征向量.(1)试确定参数a,b及特征向量考所对应的特征值;(2)问A能否相似于对角阵?说明理由.
已知一个长方形的长l以2cm/s的速率增加,宽w以3cm/s的速牢增加,则当l=12cm,w=5cm时,它的对角线增加的速率为______.
已知53求A的特征值与特征向量,并指出A可以相似对角化的条件.
下列二元函数在点(0,0)处可微的是
随机试题
“气凝胶”是一个不断发展的概念,早期提及气凝胶,更多强调它是一种由湿凝胶去除溶剂之后得到具有纳米孔的多孔材料。但是后来出现的新型气凝胶,有一部分并不满足纳米孔的特点,甚至还有的气凝胶是由气相法制备的。气凝胶最传统的制备方法是利用有机醇盐等前驱体的水解聚合反
柱形锪钻外圆上的切削刃为主切削刃,起主要切削作用。( )
不影响肺弥散量的因素是
类风湿关节炎除关节受损外还有关节外病变,主要是
患者,男,34岁,症见身热夜甚,心烦谵语,斑疹隐隐,口渴,舌绛少苔,脉细数者。治宜选用
甲为年满22周岁的青年工人,乙为年满15周岁的精神病人(限制行为能力人)。一日乙之父正与甲聊天,甲问乙是否敢拿一块石头砸丙,乙便捡起一块石头向丙扔去,将丙砸伤,对此乙之父未予阻止,花去医药费2000元。对此损失,应由:()
国家助学贷款首次还款日应不迟于毕业后()年。
下列关于政策性银行的说法错误的是()。
美国各门课程中多样化的实践活动,日本的综合活动时间反映出对_____在课程中地位的重视。【】
[*]
最新回复
(
0
)