首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[一2,2]上二阶可导,且|f(x)|≤1,又f2(0)+[f’(0)]2=4. 试证:在(一2,2)内至少存在一点ξ,使得f(ξ)+f"(ξ)=0.
设函数f(x)在[一2,2]上二阶可导,且|f(x)|≤1,又f2(0)+[f’(0)]2=4. 试证:在(一2,2)内至少存在一点ξ,使得f(ξ)+f"(ξ)=0.
admin
2018-04-18
40
问题
设函数f(x)在[一2,2]上二阶可导,且|f(x)|≤1,又f
2
(0)+[f’(0)]
2
=4.
试证:在(一2,2)内至少存在一点ξ,使得f(ξ)+f"(ξ)=0.
选项
答案
根据拉格朗日中值定理有f(0)一f(一2)=2f’(ξ
1
),一2<ξ
1
<0, f(2)一f(0)=2f’(ξ
2
),0<ξ
2
<2. 由|f(x)|≤1知|f’(ξ
1
)=[*]≤1. 令φ(x)=f
2
(x)+[f’(x)]
2
,则有φ(ξ
1
)≤2,φ(ξ
2
)≤2. 因为φ(x)在[ξ
1
,ξ
2
]上连续,且φ(0)=4,设φ(x)在[ξ
1
,ξ
2
]上的最大值在ξ∈[ξ
1
,ξ
2
][*](一2,2)上取,则φ(ξ)≥4,且φ在[ξ
1
,ξ
2
]上可导,由费马定理有:φ’(ξ)=0,即 2f(ξ).f(ξ)+2f(ξ).f"(ξ)=0. 因为|f(x)|≤l,且φ(ξ)≥4,所以f’(ξ)≠0,于是有 f(ξ)+f"(ξ)=0,ξ∈(一2,2).
解析
转载请注明原文地址:https://kaotiyun.com/show/p3k4777K
0
考研数学二
相关试题推荐
(I)因为A~B,故其特征多项式相同,即|λE-A|=|λE-B|,(λ+2)[λ2-(x+1)λ+(x-2)]=(λ+1)(λ-2)(λ-y),令λ=0,得2(x-2)=2y,即y=x-2,令λ=1,得y=-2,从而x=0.[*]
设区域D1={(x,y)||x|+|y|≤1},D2={(x,y)|1<|x|+|y|≤2}则[*]
设矩阵且|A|=-1.又设A的伴随矩阵A*有特征值λo,属于λo的特征向量为α=(-1,-1,1)T,求a,b,c及λo的值.
设λo是n阶矩阵A的特征值,且齐次线性方程组(λoE-A)x=0的基础解系为η1,η2,则A的属于λo的全部特征向量为().
自变量x取哪些值时,抛物线y=x2与y=x3的切线平行?
曲线的切线与x轴和y轴围成一个图形,记切点的横坐标为α.试求切线方程和这个图形的面积.当切点沿曲线趋于无穷远时,该面积的变化趋势如何?
设曲线£的方程为y=f(x),且y’’>0.又MT、MP分别为该曲线在点M(x0,y0)处的切线和法线.已知线段MP的长度为(其中y0’=y0’(x0),y0’’=y0’’(x0)),试推导出点P(ξ,η)的坐标表达式.
设函数f(x,y)连续,则二次积分f(x,y)dy等于().
设曲线方程为y=e-x(x≥0).(Ⅰ)把曲线y=e-x(x≥0)、x轴、y轴和直线x=ξ(ξ>0)所围成平面图形绕x轴旋转一周得一旋转体,求此旋转体的体积V(ξ),求满足(Ⅱ)在此曲线上找一点,使过该点的切线与两个坐标轴所夹平面图形的面积最大
设函数问a为何值时,f(x)在x=0处连续;a为何值时,x=0是f(x)的可去区间断点?
随机试题
充分就业目标,并不排除()
A.X线平片B.DSAC.MRID.CTE.骨放射性核素显像以下病变首选的影像学检查方法是颈1~2粉碎性骨折
下面关于含聚乙二醇水溶性基质的处方,说法错误的是处方:聚乙二醇3350 400g,聚乙二醇400 600g
下列哪项不属于长骨()。
1983年,芝加哥期权交易所推出的美国长期国债期货的期权是首个以金融衍生品为基础资产的衍生品。()
法律、行政法规规定设立公司必须报经批准的,设立这类公司的正确程序是()。
A、 B、 C、 D、 D前五个图形分别由6、5、4、3、2个相互独立的部分组成,推知下一项只有一个组成部分,答案为D。
(1998年)函数f(x)=(x2一x一2)|x3一x|不可导点的个数是()
某企业的网络拓扑结构如图2.2所示,采用VPN来实现网络安全。请简要叙述从企业总部主机到分支机构主机通过IPsec的通信过程。IPSecVPN采用何种加密算法进行加密?
Theabilityoffallingcatstorightthemselvesinmidairandlandontheirfeethasbeenasourceofwonderforages.Biolo
最新回复
(
0
)