首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是( ).
设函数f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是( ).
admin
2013-09-15
83
问题
设函数f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是( ).
选项
A、f(a)=0且f
’
(a)=0
B、f(a)=0且f
’
(a)≠0
C、f(a)>0且f
’
(a)>0
D、f(a)<0且f
’
(a)<0
答案
B
解析
举反例
关于(A),令f(x)=x
2
,a=0,则f(a)=f
’
(a)=0,但|f(x)|=x
2
在x=0可导,
因此(A)不正确;关于(C),令f(x)=x,a=1,则f(a)=1>0,f
’
(a)=1>0,
但|f(x)|=|x|在x=1可导,所以(C)也可排除;关于(D),令f(x)=-x,a=1,
则f(a)=-1<0,f
’
(a)=-1<0,,但|f(x)|=|x|在x=1也可导,即(D)也可排除;
关于(B)的正确性证明如下:设f(a)=0,f
’
(a)≠0,不失一般性,设f
’
(a)>0,
则
,因而在点x=a左侧八戈)<0,右侧f(x)>0,记φ(x)=|f(x)|,
从而φ(x)在x=a不可导,即|f(x)|在x=a不可导.应选(B).
转载请注明原文地址:https://kaotiyun.com/show/Cn34777K
0
考研数学二
相关试题推荐
(11年)设I=lnsinχdχ,J=lncotχdχ,K=lncosχdχ,则I,J,K的大小关系为【】
(2014年)设随机变量X与Y的概率分布相同,X的概率分布为P{X=0}=,P{X=1}=,且X与Y的相关系数ρXY=(Ⅰ)求(X,Y)的概率分布;(Ⅱ)求P{X+Y≤1}。
(1991年)计算二重积分所围成的区域;a>0,b>0.
(14年)设D是由曲线χy+1=0与直线y+χ=0及y=2围成的有界区域,则D的面积为_______.
设函数f(x)在(一∞,+∞)内连续,其导函数的图形如图所示,则__________.
(2010年)设函数f(x),g(x)具有二阶导数,且g’(x)<0.若g(x0)=a是g(x)的极值,则f(g(x))在x0取极大值的一个充分条件是()
(2014年)设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1.证明:(Ⅰ)0≤∫axg(t)dt≤(x一a),x∈[a,b](Ⅱ)∫aa+∫abg(t)dtf(x)dx≤∫abf(x)g(x)dx.
设随机变量X的密度函数为φ(χ),且φ(-χ)=φ(χ),F(χ)为X的分布函数,则对任意实数a,有
(2010年)设y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1一μy2是该方程对应的齐次方程的解,则()
(98年)齐次线性方程组的系数矩阵记为A.若存在3阶矩阵B≠O使得AB=O,则【】
随机试题
来料加工的创汇率与进料加工的创汇率相比()
周围型肺癌最常见的组织学类型为
通过某种图形形式确定和形象体现项目组织内各组织单元或个人之间的相互工作关系的管理工具是()。
证券公司经营证券经纪业务的,其净资本不得低于人民币5000万元。()
A、 B、 C、 D、 B。积数列变式。
夸美纽斯被人们称为“现代教育学之父”。()
党的十五届五中全会通过的《建议》指出,二十多年的改革和发展,使我国的生产力水平迈上了一个大台阶,商品短缺状况基本结束,市场供求关系发生了重大变化;社会主义市场经济体制初步建立,市场机制在配置资源中日益明显地发挥基础性作用,经济发展的体制环境发生了重大变化;
摄像头:监控
商品的本质特征绝不是商品的使用价值而是价值,价值的本质体现()
Ifthesunhasenough【C1】______towarmandlightthewholeearth,itmusthaveenoughpowertodootherthings,【C2】______.Canw
最新回复
(
0
)