首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
η*是非齐次线性方程组Ax=b的一个解,ξ1…,ξn-r,是对应的齐次线性方程组的一个基础解系.证明: η*,η*+ξ1,…,η*+ξn-r线性无关.
η*是非齐次线性方程组Ax=b的一个解,ξ1…,ξn-r,是对应的齐次线性方程组的一个基础解系.证明: η*,η*+ξ1,…,η*+ξn-r线性无关.
admin
2016-03-05
44
问题
η
*
是非齐次线性方程组Ax=b的一个解,ξ
1
…,ξ
n-r
,是对应的齐次线性方程组的一个基础解系.证明:
η
*
,η
*
+ξ
1
,…,η
*
+ξ
n-r
线性无关.
选项
答案
假设η
*
,η
*
+ξ
1
…,η
*
+ξ
n-r
线性相关,则存在不全为零的数c
0
,c
1
…,c
n-r
使得下式成c
0
η
*
+c
1
(η
*
+ξ
1
)+…+c
n-r
(η
*
+ξ
n-r
)=0,即(c
0
+c
1
+…+c
n-r
)η
*
+c
1
ξ
1
+…+c
n-r
ξ
n-r
=0. (2) 用矩阵A左乘上式两边,得0=A[(c
0
+c
1
+…+c
n-r
)η
*
+c
1
ξ
1
+…+c
n-r
ξ
n-r
]=(c
0
+c
1
…+c
n-r
)Aη
*
+c
1
Aξ
1
+…+c
n-r
Aξ
n-r
,=(c
0
+c
1
…+c
n-r
)b,因为b≠0,故c
0
+c
1
+…+c
n-r
=0,代入(2)式,有c
1
ξ
1
+…+c
n-r
ξ
n-r
=0,ξ
1
,…,ξ
n-r
是对应的齐次线性方程组的一个基础解系,故ξ
1
,…,ξ
n-r
线性无关,因此c
1
=c
2
=…=c
n-r
=0,即得c
0
=0.与假设矛盾.综上,所给向量组η
*
,η
*
+ξ
1
,+…η
*
+ξ
n-r
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/p434777K
0
考研数学二
相关试题推荐
计算极限.
求一条平行于x轴的直线,使它与y=sinx(0≤x≤3π)相交于四点,并使该直线与y=sinx围成的三个图形面积之和最小.
已知f(x)在(-∞,+∞)内连续,且f[f(x)]=x,证明至少存在一点x0∈(-∞,+∞),使f(x0)=x0.
设函数f(x)=在(-∞,+∞)上连续,且f(x)=0,则().
设f(x)在[a,b]上连续,且0<m≤f(x)≤M,证明:∫abf(x)dx∫ab(b-a)2.
已知0<P(B)<1,且P[(A1+A2)B]=P(A1|B)+P(A2|B),则下列选项成立的是().
设齐次线性方程组(I)为又已知齐次线性方程组(Ⅱ)的基础解系为α1=(0,1,1,0)T,α2=(一1,2,2,1)T.试问a,b为何值时,(I)与(Ⅱ)有非零公共解?并求出所有的非零公共解.
已知α1=(1,2,3)T,α2=(-2,1,-1)T和β1=(4,-2,α)T,β2=(7,b,4)T是等价向量组,则参数a,b应分别为()。
设随机变量X服从参数为2的指数分布,令求:(1)(U,V)的分布;(2)U,V的相关系数.
对于一切实数t,函数f(t)连续的正函数且可导,同时有f(-t)=f(t),又函数g(x)=∫-aa|x-t|f(t)dt,a>0,x∈[-a,a]将g(x)的最小值当作a的函数,使其等于f(a)-a2-1,并求f(x).
随机试题
风热犯肺证的辨证要点是热邪壅肺证的辨证要点是
简述盈亏临界点的特点。
过点(0,2,4)且平行于平面x+2z=1,y-3z=2的直线方程为【】
疫苗接种单位应当具备下列条件,但不包括
一般资料:孙某,男性,20岁,大学二年级学生。案例介绍:春节后开学,孙某和同学就学校新的宿舍楼层数打赌,同学们都说是二十九层,但他坚信是三十层。从那以后,每天下课后他都到楼下反复数楼的层数,每次多达几十遍,数不清或数不对就重数。孙某明知没有必要。
已知函数f(x)=sin2x一2sin2x.求函数f(x)的零点的集合.
行为主义心理学的创始人是()。
乙成立恐怖组织并开展培训活动,甲为其提供资助。受培训的丙、丁为实施恐怖活动准备凶器。因案件被及时侦破,乙、丙、丁未能实施恐怖活动。关于本案,下列哪些选项是正确的?()
Onafivetothreevote,theSupremeCourtknockedoutmuchofArizona’simmigrationlawMonday—amodestpolicyvictoryforth
Canyouprovethatsevenishalfoftwelve?7+7=12?
最新回复
(
0
)