首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
η*是非齐次线性方程组Ax=b的一个解,ξ1…,ξn-r,是对应的齐次线性方程组的一个基础解系.证明: η*,η*+ξ1,…,η*+ξn-r线性无关.
η*是非齐次线性方程组Ax=b的一个解,ξ1…,ξn-r,是对应的齐次线性方程组的一个基础解系.证明: η*,η*+ξ1,…,η*+ξn-r线性无关.
admin
2016-03-05
53
问题
η
*
是非齐次线性方程组Ax=b的一个解,ξ
1
…,ξ
n-r
,是对应的齐次线性方程组的一个基础解系.证明:
η
*
,η
*
+ξ
1
,…,η
*
+ξ
n-r
线性无关.
选项
答案
假设η
*
,η
*
+ξ
1
…,η
*
+ξ
n-r
线性相关,则存在不全为零的数c
0
,c
1
…,c
n-r
使得下式成c
0
η
*
+c
1
(η
*
+ξ
1
)+…+c
n-r
(η
*
+ξ
n-r
)=0,即(c
0
+c
1
+…+c
n-r
)η
*
+c
1
ξ
1
+…+c
n-r
ξ
n-r
=0. (2) 用矩阵A左乘上式两边,得0=A[(c
0
+c
1
+…+c
n-r
)η
*
+c
1
ξ
1
+…+c
n-r
ξ
n-r
]=(c
0
+c
1
…+c
n-r
)Aη
*
+c
1
Aξ
1
+…+c
n-r
Aξ
n-r
,=(c
0
+c
1
…+c
n-r
)b,因为b≠0,故c
0
+c
1
+…+c
n-r
=0,代入(2)式,有c
1
ξ
1
+…+c
n-r
ξ
n-r
=0,ξ
1
,…,ξ
n-r
是对应的齐次线性方程组的一个基础解系,故ξ
1
,…,ξ
n-r
线性无关,因此c
1
=c
2
=…=c
n-r
=0,即得c
0
=0.与假设矛盾.综上,所给向量组η
*
,η
*
+ξ
1
,+…η
*
+ξ
n-r
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/p434777K
0
考研数学二
相关试题推荐
设y=f(x)在[0,+∞)上有二阶连续导数,且f”(x)>0,y=g(x)是y=f(x)在(0,+∞)内任意点x0处的切线方程,F(x)=f(x)-g(x),则()
设积分I=∫0+∞1/(xa+xb)dx(a>b>0)收敛,则()
设函数f(x)有二阶连续导数,且f”(x)≠0,又有f(x+△x)=f(x)+△xf’(x+θ△x),0<θ<1.证明:
设函数f(x)在[a,b]上二阶可导,f’(a)=f’(b)=0,证明:存在ξ∈(a,b),使得|f”(ξ)|≥|f(b)-f(a)|.
设某企业生产一种产品,其成本C(Q)=-16Q2+100Q+1000,平均收益=a一(a>0,0<b<24),当边际收益MR=44,需求价格弹性Ep=时获得最大利润,求获得最大利润时产品的产量及常数a与b的值.
已知f(x)是微分方程xf′(x)-f(x)=满足初始条件f(1)=0的特解,则f(x)dx=__________.
设A为三阶矩阵,特征值为λ1=λ2=1,λ3=2,其对应的线性无关的特征向量为a1,a2,a3,令P1=(a1一a3,a2+a3,),则A*P1=().
设y=y(x)是二阶常系数微分方程y”+Py’+qy=e3x满足初始条件y(0)=y’(0)=0的特解,则当x→0时,求函数[ln(1+x2)]/y(x)的极限.
设an=∫0π/4tannxdx,求(an+an+2)的值
设向量r=x2zi+xy2j+yz2k,试求散度divr在点P(2,2,1)处:(1)沿曲面x2+y2+z2=9外法线方向的方向导数;(2)最大变化率.
随机试题
胀接广泛应用于管与板的结合,从材料的性能上其必要条件是E板________E管。
关于慢性粒细胞白血病急性变,下列哪项不正确?
B细胞识别的抗原表位是
患者,男性,28岁,双手深二度烧伤。康复科护士为患者做手部功能恢复指导时,指导患者平时双手应处于
根据个人所得税相关规定,下列说法中正确的有()。
某采矿企业2008年6月开采锡矿石50000吨,销售锡矿原矿40000吨、锡矿精矿100吨,锡矿精矿的选矿比为1:12,锡矿资源税适用税额每吨8元。该企业6月应纳资源税()元。
关于玄学的论述错误的是()
按网络覆盖范围的大小,我们将计算机网络分为______、城域网(MAN)、广域网(WAN)和______。
“传统”与“现代”并不是一个时间概念,它们应有价值内容。现代法律文化以实现社会成员的个性发展,自由、平等、尊严、幸福为追求的价值目标。因此( )
下列关于我国法的溯及力的表述,正确的是()。(2009年单选14)
最新回复
(
0
)