首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2002年试题,九)已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2一α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解
(2002年试题,九)已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2一α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解
admin
2013-12-27
65
问题
(2002年试题,九)已知4阶方阵A=(α
1
,α
2
,α
3
,α
4
),α
1
,α
2
,α
3
,α
4
均为4维列向量,其中α
2
,α
3
,α
4
线性无关,α
1
=2α
2
一α
3
.如果β=α
1
+α
2
+α
3
+α
4
,求线性方程组Ax=β的通解
选项
答案
根据题设α
2
,α
3
,α
4
线性无关且α
1
=2α
2
一α
3
,因此rA=3,同时β=α
1
+α
2
+α
3
+α
4
,则方程组Ax=β的增广矩阵B=(α
1
,α
2
,α
3
,α
4
,β)的秩也为3,即rB=3,因此方程组Ax=β有解,由4一rA=1,知Ax=β有无穷多解,且Ax=0的解空间维数等于1,即基础解系中只含一个解向量,又由已知α
1
=2α
2
一α
3
,即α
1
一2α
2
+α
3
=0,可推出[*]从而[*]是Ax=0的一个解向量,因此[*]是Ax=0的基础解系.同时由β=α
1
+α
2
+α
3
+α
4
,可推出[*]是Ax=β的一个特解,从而方程组Ax=β通解为[*]其中C为任意常数. 解析二令[*]则由β=Ax=(α
1
,α
2
,α
3
,α
4
)[*]得,x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=α
1
+α
2
+α
3
+α
4
将α
1
=2α
2
一α
3
代λ上式得,(2x
1
+x
2
—3)α
2
+(一x
1
+x
3
)α+(x
4
—1)α
4
=0因α
2
,α
3
,α
4
线性无关,故而有 [*] 解上述方程组得 [*] 其中k为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/pC54777K
0
考研数学一
相关试题推荐
求由双曲线xy=a2与直线所围成的面积S.
求下列矩阵的秩:
求解下列齐次线性方程组:
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η1,…,ηn-r+1是它的n—r+1个线性无关的解,试证它的任一解可表示为x=k1η1+…+kn-r+1ηn-r+1(其中k1+…+kn-r+1=1).
设向量组的秩为2,求a,b.
设函数f(x)在区间[0,+∞)上连续可导,f(0)=1,且对任意t>0,曲线y=f(x)与直线x=0,x=t,y=0所围图形的面积与曲线y=f(x)在[0,t]上的一段弧长相等,求f(x).
求极限.
设曲线y=y(x)位于第一象限且在原点处与x轴相切,P(x,y)为曲线上任一点,该点与原点之间的弧长为l1,点P处的切线与y轴交于点A,点A,P之间的距离为l2,又满足x(3l1+2)=2(x+1)l2,求曲线y=y(x).
设则∫-15f(x-1)dx=________.
求幂级数的和函数.
随机试题
Manyateacherinourdepartment______abroad.
衣原体的繁殖形式是
食物中毒与其他急性疾病最本质的区别是
某政府投资民用建筑工程项目拟进行施工招标,该项招标应当具备的条件有()。
在施工总承包模式的特点中,建设工程项目质量的好坏在很大程度上取决于()。
《民事诉讼法》规定,当事人申请采取财产保全的,我国的涉外仲裁机构应当将当事人的申请,提交()人民法院裁定。
计算企业所得税应纳税所得额时,准予扣除的保险费用包括()。
大学生摄入的油脂应该以植物油为主,但可以有一定量动物脂肪的摄入。
一男性,24岁。性格一向拘谨、怕羞,平时见到女性就脸红。在一次散步时,一个女青年迎面走来,他突然产生了把阴茎取出来的奇异想法,在此冲动下当即实行,对方见了,倍感羞辱,急忙离去。他顿时感到心情舒畅,有一种特殊的满足感。从此以后,多次在公共场所发生此行为。直至
A、 B、 C、 B
最新回复
(
0
)