首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2002年试题,九)已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2一α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解
(2002年试题,九)已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2一α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解
admin
2013-12-27
78
问题
(2002年试题,九)已知4阶方阵A=(α
1
,α
2
,α
3
,α
4
),α
1
,α
2
,α
3
,α
4
均为4维列向量,其中α
2
,α
3
,α
4
线性无关,α
1
=2α
2
一α
3
.如果β=α
1
+α
2
+α
3
+α
4
,求线性方程组Ax=β的通解
选项
答案
根据题设α
2
,α
3
,α
4
线性无关且α
1
=2α
2
一α
3
,因此rA=3,同时β=α
1
+α
2
+α
3
+α
4
,则方程组Ax=β的增广矩阵B=(α
1
,α
2
,α
3
,α
4
,β)的秩也为3,即rB=3,因此方程组Ax=β有解,由4一rA=1,知Ax=β有无穷多解,且Ax=0的解空间维数等于1,即基础解系中只含一个解向量,又由已知α
1
=2α
2
一α
3
,即α
1
一2α
2
+α
3
=0,可推出[*]从而[*]是Ax=0的一个解向量,因此[*]是Ax=0的基础解系.同时由β=α
1
+α
2
+α
3
+α
4
,可推出[*]是Ax=β的一个特解,从而方程组Ax=β通解为[*]其中C为任意常数. 解析二令[*]则由β=Ax=(α
1
,α
2
,α
3
,α
4
)[*]得,x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=α
1
+α
2
+α
3
+α
4
将α
1
=2α
2
一α
3
代λ上式得,(2x
1
+x
2
—3)α
2
+(一x
1
+x
3
)α+(x
4
—1)α
4
=0因α
2
,α
3
,α
4
线性无关,故而有 [*] 解上述方程组得 [*] 其中k为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/pC54777K
0
考研数学一
相关试题推荐
设A为n阶方阵,且满足A2=3A,E为n阶单位矩阵.证明4E-A可逆;
设3阶方阵A=(α1,α2,α3)有3个不同的特征值,且α3=α1+2α2,试证:若α1+α2+α3=β,求Ax=β的通解。
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求A的特征值与特征向量;
设函数f(x)满足等式,且f(0)=2,则f(π)等于()
求下列不定积分:
求空间曲线在xOy面上的投影曲线方程.
设0<a1<1,an+1=1n(2-an)+an,证明:数列{an}收敛,并求.
设函数f(x)在区间[0,1]上连续,则∫01f(x)dx=()
曲线r=1+cosθ(0≤θ≤2π)的弧长为________。
(2003年试题,八)设函数f(x)连续且恒大于零,其中Ω(t)={(x,y,z)|x2+y2+z2≤t2},D(t)={(x,y)|x2+y2≤t2}.证明当t>0时,.
随机试题
PASSAGETHREEWhyisthetasteoftheEnglishinthecultivationoflandandinlandscapegardeningunrivaled?
图中警察手势为左转弯信号。
进行无菌操作时应遵守哪些原则?
常并发败血症的肺炎是
清营汤的组成药物不包括
甲国公民大卫到乙国办理商务,购买了联程客票搭乘甲国的国际航班,经北京首都国际机场转机到乙国。甲国与我国没有专门协定。根据我国有关出入境法律,下列判断正确的是:(2010年试卷一第98题)
从一般意义上讲,抽样分布的含义是指()。
在马柯威茨的投资组合理论中,方差一般不用于()
请用不超过150字的篇幅,概括出给定资料所反映的主要问题。用不超过350字的篇幅,提出解决给定资料所反映问题的方案。要有条理地说明,要体现针对性和可操作性。
LastyearmorethanamillionandahalfforeigntouristsvisitedtheUnitedStates.Inordertounderstandinterculturalproble
最新回复
(
0
)