首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2002年试题,九)已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2一α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解
(2002年试题,九)已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2一α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解
admin
2013-12-27
54
问题
(2002年试题,九)已知4阶方阵A=(α
1
,α
2
,α
3
,α
4
),α
1
,α
2
,α
3
,α
4
均为4维列向量,其中α
2
,α
3
,α
4
线性无关,α
1
=2α
2
一α
3
.如果β=α
1
+α
2
+α
3
+α
4
,求线性方程组Ax=β的通解
选项
答案
根据题设α
2
,α
3
,α
4
线性无关且α
1
=2α
2
一α
3
,因此rA=3,同时β=α
1
+α
2
+α
3
+α
4
,则方程组Ax=β的增广矩阵B=(α
1
,α
2
,α
3
,α
4
,β)的秩也为3,即rB=3,因此方程组Ax=β有解,由4一rA=1,知Ax=β有无穷多解,且Ax=0的解空间维数等于1,即基础解系中只含一个解向量,又由已知α
1
=2α
2
一α
3
,即α
1
一2α
2
+α
3
=0,可推出[*]从而[*]是Ax=0的一个解向量,因此[*]是Ax=0的基础解系.同时由β=α
1
+α
2
+α
3
+α
4
,可推出[*]是Ax=β的一个特解,从而方程组Ax=β通解为[*]其中C为任意常数. 解析二令[*]则由β=Ax=(α
1
,α
2
,α
3
,α
4
)[*]得,x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=α
1
+α
2
+α
3
+α
4
将α
1
=2α
2
一α
3
代λ上式得,(2x
1
+x
2
—3)α
2
+(一x
1
+x
3
)α+(x
4
—1)α
4
=0因α
2
,α
3
,α
4
线性无关,故而有 [*] 解上述方程组得 [*] 其中k为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/pC54777K
0
考研数学一
相关试题推荐
求由双曲线xy=a2与直线所围成的面积S.
设A=,求:可逆矩阵P,使PA为行最简形矩阵.
求下列矩阵的秩:
在秩是r的矩阵中,有没有等于0的r—l阶子式?有没有等于0的r阶子式?
设n阶实矩阵A为反对称矩阵,即AT=-A.证明:A+E与A-E都可逆;
设对于半空间x>0内的任意光滑有向封闭曲面∑,都有其中函数f(x)在(0,+∞)内具有连续的一阶导数,且,求f(x)
当x→0时,x-sinxcosxcos2x与cxk为等价无穷小,则c=__________,k=____________.
设函数f(x)可导,y=f(x3),当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.3,则f’(-1)=().
写出下列级数的通项:
级数的收敛区间为________.
随机试题
油田生产单位要定期进行安全检查,基层队每()一次。
依照《行政复议法》的规定,对于行政行为不服的,可以自知道该具体行政行为之日起()内向复议机关提出复议申请。
下列选项中,属于无芽胞厌氧菌感染特征的是
高血压危象药物治疗可首选
中国收货人甲公司从国外购货,取得的提单上载明“凭指示”的字样,承运人为中国乙公司。当甲公司凭正本提单到港口提货时,被乙公司告知货物已不在其手中。后甲公司在中国法院对乙公司提起索赔诉讼。乙公司在下列哪种情形下不可免除交货责任?()
按支出用途分类,我国的财政支出共有()项,主要包括基本建设支出等。
在系统中设置单位信息时,如果企业类型选择了工业模式,则()。
(36)havegreetedQueenElizabethⅡassheappearedoutside(37)inapinksuitandhatonher80thbirthday.And(38)workingg
June15DearSir,Yourshipmentoftwelvethousand"Smart"watcheswasreceivedbyourcompanythismorning.However,wewi
Directions:Forthispart,youareallowed30minutestowriteacompositiononthetopic:DoesHeroismStillWork?Youshouldw
最新回复
(
0
)