首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在区间[1,3]上连续,在区间(1,3)内二阶可导,且f(1)=f(3).证明:存在ξ∈(0,3),使λf’(ξ)+f"(ξ)=0,其中λ是常数.
设函数f(x)在区间[1,3]上连续,在区间(1,3)内二阶可导,且f(1)=f(3).证明:存在ξ∈(0,3),使λf’(ξ)+f"(ξ)=0,其中λ是常数.
admin
2020-10-21
55
问题
设函数f(x)在区间[1,3]上连续,在区间(1,3)内二阶可导,且
f(1)=f(3).证明:存在ξ∈(0,3),使λf’(ξ)+f"(ξ)=0,其中λ是常数.
选项
答案
[*] [*] 故f’(1)=0. 又因为f(x)满足:①在[1,3]上连续;②在(1,3)内可导;③f(1)=f(3),由罗尔定理,存在ξ
1
∈(1,3),使得f(ξ
1
)=0.令F(x)=f’(x)e
λx
,则F’(x)=[f"(x)+λf’(x)]e
λx
F(x)满足:①在[1,ξ
1
]上连续;②在(1,ξ
1
)内可导;③F(1)=F(ξ
1
)=0,故由罗尔定理,存在ξ∈(1,ξ
1
)[*](0,3),使得F’(ξ)一[f"(ξ)+λf’(ξ)]e
λx
=0,即λf’(ξ)+f"(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/pF84777K
0
考研数学二
相关试题推荐
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α1,α2线性无关,若α1+2α2一α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Ax=β的通解为()
设矩阵Am×n的秩为r(A)=m<n,b为任一m维列向量,则
设n元齐次线性方程组Ax=0的系数矩阵A的秩为r,则Ax=0有非零解的充分必要条件是
设区域D={(x,y)|(x2+y2)2≤a2(x2-y2),a>0},则(x2+y3)dxdy=___.
过曲线上的一点A作切线,使该切线与曲线及x轴所围成的平面区域的面积为3/4,所围区域绕x轴旋转一周而成的体积为___。
设f(x)为连续函数,且x2+y2+z2=
(2000年)已知f(χ)是周期为5的连续函数.它在χ=0某个邻域内满足关系式f(1+sinχ)-3f(1-sinχ)=8χ+α(χ)其中α(χ)是当χ→0时比χ高阶的无穷小,且f(χ)在χ=1处可导,求曲线y=f(χ)在点(6,f(6
设a1=1,当n≥1时,an+1=,证明:数列{an}收敛并求其极限.
已知二次型f(χ1,χ2,χ3)=(1-a)χ12+(1-a)χ22+2χ32+2(1+a)χ1χ2的秩为2.(1)求a.(2)求作正交变换X=QY,把f(χ1,χ2,χ3)化为标准形.(3)求方程f(χ1,χ2,χ3)=0的
随机试题
氩弧焊可焊的材料范围很广,几乎所有的金属材料都可以用氩弧焊进行焊接。
属于冲动传导异常所致的心律失常类型是
典型登革热的临床表现主要有
下列哪项因素有利于创伤修复和伤口愈合
航空货运按运输形式大致可以分为()和包机运输。
铝及铝合金管的焊接可采用的方法有( )。
钻孔灌注桩断桩的防治措施有()。
具有强烈的好奇心、浓厚的学习兴趣、积极主动、认真专注、不怕困难、敢于探究和尝试、乐于想象和创造等,这些均是良好的()的重要体现。
一支600米长的队伍行军,队尾的通信员要与最前面的连长联系,他用3分钟跑步追上了连长,又在队伍休息的时间以同样的速度跑回了队尾,用了2分24秒。如队伍和通信员均匀速前进,则通信员在行军时从最前面跑步回到队尾需要多长时间?
西安事变的和平解决标志着抗日民族统一战线的正式形成。
最新回复
(
0
)