首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A,B等价,则下列说法中,不一定成立的是 ( )
设n阶矩阵A,B等价,则下列说法中,不一定成立的是 ( )
admin
2019-07-12
103
问题
设n阶矩阵A,B等价,则下列说法中,不一定成立的是 ( )
选项
A、若|A|>0,则|B|>0
B、如果A可逆,则存在可逆矩阵P,使得PB=E
C、如果A≌E,则|B|≠0
D、存在可逆矩阵P与Q,使得PAQ=B
答案
A
解析
两矩阵等价的充要条件是矩阵同型且秩相同.
当A可逆时,有r(A)=n,因此有r(B)=n,也即B是可逆的,故B
-1
B=E,可见(B)中命题成立;A≌E的充要条件也是r(A)=n,此时也有r(B)=n,故|B|≠0,可见(C)中命题也是成立的;矩阵A,B等价的充要条件是存在可逆矩阵P与Q,使得PAQ=B,可知(D)中命题也是成立的.
故唯一可能不成立的是(A)中的命题.事实上,当|A|>0时,我们也只能得到r(B)=n,也即|B|≠0,不一定有|B|>0.故选(A).
转载请注明原文地址:https://kaotiyun.com/show/pVJ4777K
0
考研数学三
相关试题推荐
n为给定的自然数,极限
求n及a的值.
设A为实对称矩阵,且A的特征值都大于零.证明:A为正定矩阵.
位于上半平面的上凹曲线y=y(x)过点(0,2),在该点处的切线水平,曲线上任一点(x,y)处的曲率与及1+y’2之积成反比,比例系数为求y=y(x).
设f(x)为偶函数,且满足f’(x)+2f(x)-3∫0xf(t-x)dt=-3x+2,求f(x).
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫0xf’(t)dt+2x∫01f(tx)dt+e-x=0,求f(x).
用变量代换x=lnt将方程化为y关于t的方程,并求原方程的通解.
设f(x)在[0,1]上二阶可导,且f’’(x)<0.证明:∫01f(x2)dx≤
设f(x)=求a,b,c的值,使f"(0)存在.
在球面x2+y2+z2=5R2(x>0,y>0,z>0)上,求函数f(x,y,z)=lnx+lny+3lnz的最大值,并利用所得结果证明不等式(a>0,b>0,c>0).
随机试题
Morethanfortythousandreaderstolduswhattheylookedforinclosefriendships,whattheyexpected【56】friends,whattheywer
物理治疗、康复和相关操作的分类章节是
下列除哪项外,均为里实热证的表现
以下腧穴中,哪穴是肾的募穴( )
能增强地高辛对心脏毒性的因素不包括()
下列关于世界上最早研制成功的火车、飞机的动力机的说法,正确的是()。
上海社会工作培训中心成立于()。
给定资料1.在山东青岛(移风)国际蔬菜花卉种子产业园里,高端技术孕育的蔬菜良种反复提纯,恣意生长;鳌山卫镇的村民检修着植保无人机,只待收获地标品牌“即墨地瓜”“白庙芋头”……青岛市即墨区的“三农”发展,正在缓缓铺开农业强、农村美、农民富的斑斓画卷
以下数据结构中,属于非线性数据结构的是()。
Whenahousewifeinaworking-classdistrictofMexicoCitygetsfedupwiththelackofworkinglightsinherlocalpark,shel
最新回复
(
0
)