首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫0xf’(t)dt+2x∫01f(tx)dt+e-x=0,求f(x).
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫0xf’(t)dt+2x∫01f(tx)dt+e-x=0,求f(x).
admin
2018-05-25
42
问题
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫
0
x
f’(t)dt+2x∫
0
1
f(tx)dt+e
-x
=0,求f(x).
选项
答案
因为x∫
0
1
f(tx)dt=∫
0
x
f(u)du,所以f’(x)+3∫
0
x
f’(t)dt+2x∫
0
1
f(tx)dt+e
-x
=0可化为f’(x)+3∫
0
x
f’(t)dt+2∫
0
x
f(t)dt+e
-x
=0,两边对x求导得f’’(x)+3f’(x)+2f(x)=e
-x
,由λ
2
+3λ+2=0得λ
1
=-1,λ
2
=-2,则方程f’’(x)+3f’(x)+2f(x)=0的通解为C
1
e
-x
+C
2
e
-2x
.令f’’(x)+3f’(x)+2f(x)=e
-x
的一个特解为y
0
=axe
-x
,代入得a=1,则原方程的通解为f(x)=C
1
e
-x
+C
2
e
-2x
+xe
-x
.由f(0)=1,f’(0)=-1得C
1
=0,C
2
=1,故原方程的解为f(x)=e
-2x
+xe
-x
.
解析
转载请注明原文地址:https://kaotiyun.com/show/JzW4777K
0
考研数学三
相关试题推荐
设f(x)=试问当α取何值时,f(x)在点x=0处,①连续;②可导;③一阶导数连续;④二阶导数存在.
函数f(x)=2x+3()
设f(x)具有二阶导数,且fˊˊ(x)>0.又设u(t)在区间[0,a](或[a,0])上连续.证明:
设f(x,y)在点(0,0)处连续,且其中a,b,c为常数.(1)讨论f(x,y)在点(0,0)处是否可微,若可微则求出df(x,y)|(0,0);(2)讨论f(x,y)在点(0,0)处是否取极值,说明理由.
试分析下列各个结论是函数z=f(x,y)在点P0(x0,y0)处可微的充分条件还是必要条件.(1)二元函数的极限存在;(2)二元函数z=f(x,y)在点(x0,y0)的某个邻域内有界;(3)(4)F(x)=f(x0,y0)在点x0处可微,G(y)=
设求:|一2B|;
设求An。
随机试题
除()保密的外,行政法规和规章草案要向社会公开征求意见,并以适当方式反馈意见采纳情况。
从经济性考虑,只要满足使用要求就应选用________。
曲线y=x+ex在点(0,1)处的切线斜率k=________.
遵循合法原则,具体包括合法()。
一般适用于某种风险可能造成相当大的损失,且发生的频率较高或应用其他风险对策防范风险代价昂贵,得不偿失的风险对策是()。
位于市区的某中学2017年1月利用学校空地建造写字楼,发生的相关业务如下:(1)按照国家有关规定补交土地出让金2000万元,缴纳相关费用81万元。(2)写字楼开发成本3600万元。(3)写字楼开发费用中的利息支出为500万元(能够提供金融机构证明并按
案例一般资料:求助者,男性,61岁,退休教师。案例介绍:求助者的一位老朋友半月前因心脏病救治无效去世,求助者得知消息后当晚即感胸闷、心慌,出现入睡困难并容易惊醒的现象。经一周的住院检查,并未发现患心脏病的迹象。但求助者还是怀疑自己得了冠
下面为高中物理教材力的合成一节中“探究合力的方法”的实验装置。在这个探究实验中,设计一个教学方案让学生更好地理解力的平行四边形法则。
下列按照时间顺序出现最晚的是:
A、Negative.B、Positive.C、Ambiguous.D、Neutral.B本题要求推断McKay教授对于子女与父母分开居住的看法。McKay教授的原话是Ithinkthatit’sanexcellentarrangeme
最新回复
(
0
)